
Who will save the tokamak – Harry Potter, Arnold Schwarzenegger, Shaquille O'Neal or Donald Trump?

J. P. Freidberg, F. Mangiarotti, J. Minervini MIT Plasma Science and Fusion Center

Why does the tokamak need saving?

- Standard tokamak does not scale to a reactor
- Design determined by nuclear physics and engineering constraints
- Minimal plasma physics enters the design
- But, the plasma physics is incompatible with the engineering design

Design a reactor and prove this!

Goal – Minimize the Cost

- Total cost = Capital + Operating + Fuel ≈ Capital
- Capital = Fixed + Nuclear island
- Fixed = $K_F P_E$
- Nuclear Island = $K_{I}V_{I}$
- Cost/Watt = $K_F + K_I \frac{V_I}{P_F}$
- Minimize

$$\frac{V_{I}}{P_{E}} = \frac{2\pi^{2}R_{0}}{P_{E}} \Big[\varepsilon_{B}(a+b)(\kappa a+b) - \kappa a^{2} + (1-\varepsilon_{B})(a+b+c)(\kappa a+b+c) \Big]$$
$$\varepsilon_{B} = (a+b)/R_{0}$$

Design Goals

Quantity	Symbol
Minor radius of the plasma	а
Major radius of the plasma	R_{0}
Thickness of the blanket/shield and first wall	b
Thickness of the magnets	С
Plasma temperature	Т
Plasma density	n
Plasma pressure	p
Energy confinement time	$ au_{\scriptscriptstyle E}$
Magnetic field at $R = R_0$	B_{0}
Normalized plasma pressure	eta

Engineering and Nuclear Physics Constraints

Quantity	Symbol	Limiting Value
Electric power output	P_{E}	1000 MW
Maximum neutron wall loading	$P_{_W}$	4 MW/m^2
Maximum magnetic field at the coil	B _{max}	13 T
Maximum mechanical stress on the magnet: Total = 650 MPa, Tensile = 500 MPa	$\sigma_{_{ ext{max}}}$.	500 MPa
Maximum superconducting coil overall current density	J _{max}	25 MA/m^2
Thermal conversion efficiency	$\eta_{ au}$	0.4
Maximum RF recirculating power fraction	$f_{\scriptscriptstyle RP}$	0.1
Wall to absorbed RF power conversion efficiency	$\eta_{_{RF}}$	0.4
Temperature at $[\sigma v / T^2]_{max}$	\overline{T}	14 keV
Fast neutron slowing down cross section in Li-7	$\sigma_{_{sd}}$	2 barns
Slow neutron breeding cross section in Li-6	$\sigma_{_{b0}}$	950 barns at 0.025 eV

The Design – No Plasma Physics Required

• Elongation: Good for cost, good for plasma physics Limited by engineering, limited by plasma physics

 $\kappa = 1.7$

• Blanket/shield: limited by nuclear cross sections

<u>b = 1.2 m</u>

• Wall loading: relation between R_0 and a: $P_W A = P_n$

$$R_{0} = \left[\frac{1}{4\pi^{2}} \frac{E_{n}}{E_{F}} \frac{P_{E}}{\eta_{T}} \left(\frac{2}{1+\kappa^{2}}\right)^{1/2}\right] \left(\frac{1}{a}\right) \sim \frac{1}{a}$$

• Coil thickness: relation between C and a

$$c = c_{\sigma} + c_{J} = R_{0} \left\{ 2(1 - \varepsilon_{B}) - \left[(1 - \varepsilon_{B})^{2} - \alpha_{M} \right]^{1/2} - \left[(1 - \varepsilon_{B})^{2} - \alpha_{J} \right]^{1/2} \right\}$$
$$\alpha_{M} = \left(\frac{B_{0}^{2}}{2\mu_{0}\sigma_{\max}} \right) \ln \left(\frac{1 + \varepsilon_{B}}{1 - \varepsilon_{B}} \right) \qquad \alpha_{J} = \frac{2B_{0}}{\mu_{0}R_{0}J_{\max}}$$

Minimize V_1 / P_E with respect to a

• Set $B_0 = (1 - \varepsilon_B)B_{\text{max}}$

Quantity	Symbol	B _{max} = 13
Cost function (m ³ /MW)	V, / P _E	0.79
Magnetic field at $R = R_0$ (T)	B ₀	5.7
Elongation	к	1.7
Blanket thickness (m)	b	1.2
Minor radius (m)	а	1.49
Total magnet thickness (m)	С	0.65
Major radius (m)	R _o	4.8
Aspect ratio	R ₀ / a	3.2
Plasma volume (m ³)	V _P	357

Engineering DEMANDS on the Plasma Physics

- Profiles: $T = 2\overline{T}(1-\rho^2)$ $p = 2.5\overline{p}(1-\rho^2)^{3/2}$ $n = 1.5\overline{n}(1-\rho^2)^{1/2}$
- Temperature: Maximize $\sigma v / T^2$ $\overline{T} = 14 \, keV$

• Pressure:
$$P_E = \eta_T P_F = \frac{\eta_T E_F}{16} \int p^2 \frac{\langle \sigma v \rangle}{T^2} d\mathbf{r} \rightarrow \overline{p} = 7.3 atm$$

• Beta:
$$\beta = \frac{2\mu_0 \overline{p}}{B_0^2} = 5.6\%$$

- Density: $p = 2nT \rightarrow n = 1.35 \times 10^{20} m^{-3}$
- Energy confinement time: $P_{\alpha} = \frac{3}{2\tau_{F}} \int p d\mathbf{r} = \frac{3}{2} \frac{V_{\rho} \overline{p}}{\tau_{F}} \rightarrow \tau_{E} = 1.0 \text{ sec}$

Plasma Current and Bootstrap Fraction

- Requires engineering and plasma physics
- The current from empirical scaling (H = 1):

$$\tau_{E} = 0.145H \frac{I^{0.93} R^{1.39} a^{0.58} \kappa^{0.78} \overline{n}^{0.41} B_{0}^{0.15} A^{0.19}}{P_{\alpha}^{0.69}} \quad \text{sec} \quad \rightarrow \quad I = 17.5 \, MA$$

• Kink safety factor:
$$q_* = \frac{2\pi a^2 B_0}{\mu_0 R_0 l} \left(\frac{1+\kappa^2}{2}\right) = 1.47$$

• LH current drive: $P_{CD} = \eta_{RF}P_{RF} = \eta_{RF}f_{RP}P_{E} = 40 MW$ $\eta_{CD} = \frac{R_0\overline{n}l_{CD}}{P_{CD}} \approx \frac{1.2}{n_{\parallel}^2} \quad n_{\parallel} \approx \frac{\omega_{pe}}{\Omega_e} + \left(1 + \frac{\omega_{pe}^2}{\Omega_e^2}\right)^{1/2} \left(1 - \frac{\omega_{LH}^2}{\omega^2}\right)^{1/2} \rightarrow I_{CD} = 2.0 MA$ • Bootstrap fraction: $f_B = 1 - \frac{I_{CD}}{I} = 0.89$

How well does the plasma shape-up?

• Greenwald density limit:

$$\overline{n} < \overline{n}_G \equiv \frac{I}{\pi a^2} \rightarrow 1.35 < 2.51$$

• Troyon beta limit:

$$\beta < \beta_{T} \equiv \beta_{N} \frac{I}{aB_{0}} \beta_{N} = 2.8\% \rightarrow 5.6 < 5.8$$

• Kink safety factor limit:

$$q_{\kappa} \approx 2 < q_{*} = \frac{2\pi a^{2} B_{0}}{\mu_{0} R_{0} l} \left(\frac{1+\kappa^{2}}{2}\right) \rightarrow 2 < 1.5$$

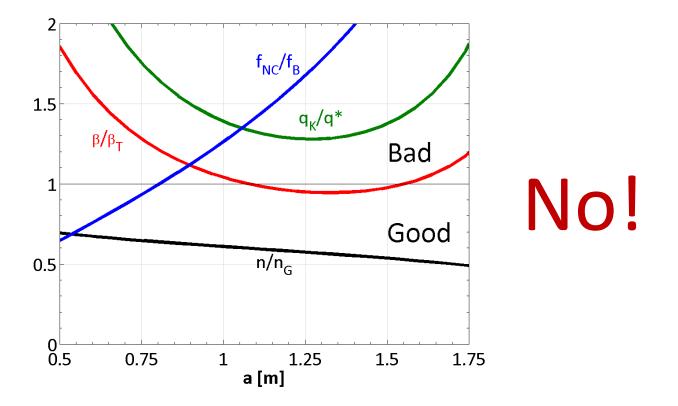
The Maximum Bootstrap Fraction

• The maximum bootstrap fraction:

$$J_{B}(\rho) = -2.44 \left(\frac{r}{R_{0}}\right)^{1/2} \left(\frac{\rho}{B_{0}}\right) \left(\frac{1}{n} \frac{\partial n}{\partial r} + 0.055 \frac{1}{T} \frac{\partial T}{\partial r}\right) = \left[6.8 \frac{\overline{\rho}}{\hat{a}^{1/2} R_{0}^{1/2}}\right] \frac{\rho^{3/2} (1-\rho^{2})^{1/2}}{B_{0}}$$

$$b_{\theta}(\rho) = \frac{B_{\theta}(\rho)}{\mu_{0} I/2\pi \hat{a}} = \frac{1}{\rho} \left[\frac{(1+\alpha-\alpha x)e^{\alpha x} - 1-\alpha}{e^{\alpha} - 1-\alpha}\right]$$

$$f_{NC} = \frac{I_{B}}{I} = 268 \left(\frac{a^{5/2} \kappa^{5/4} \overline{\rho}}{\mu_{0} R_{0}^{1/2} I^{2}}\right) \int_{0}^{1} \left[\frac{\rho^{5/2} (1-\rho^{2})^{1/2}}{b_{\theta}}\right] d\rho$$


$$f_{B} < f_{NC} \rightarrow 0.89 < 0.39$$

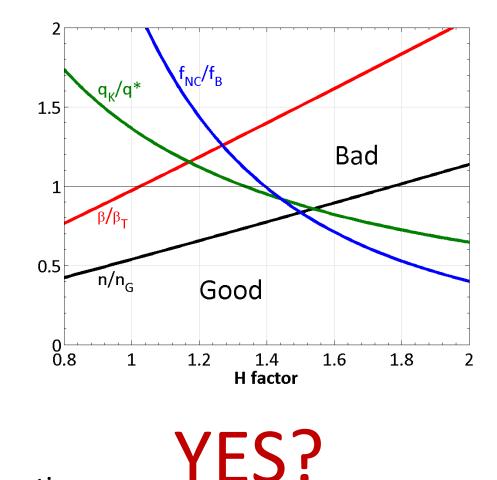
• The problem:

Plasma needs too much current for ignition

Is there a simple way out?

- Forget about minimizing V_{I} / P_{F}
- Is there any value of *a* that satisfies all constraints?

• The standard tokamak does not scale to a reactor!

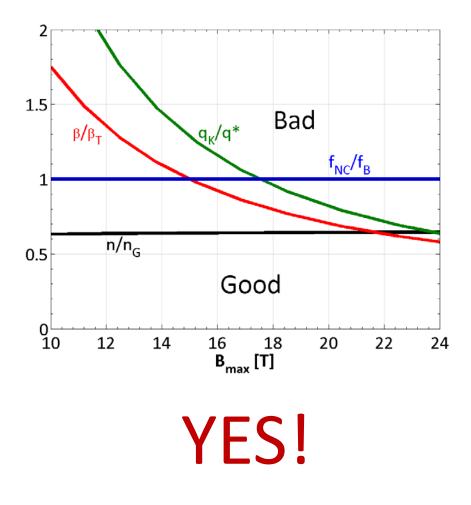

The Harry Potter Solution

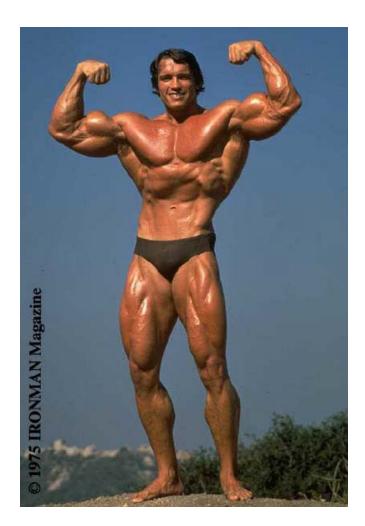
- Keeps V_{I} / P_{E} fixed
- Raise H
- Lowers the required *I*
- Lowers the achievable *n*
- Lowers the achievable β
- Success requires

 $H = 1 \rightarrow H = 1.4$

$$\beta_N = 2.8 \rightarrow \beta_N = 3.4$$

Robust, disruption free operation

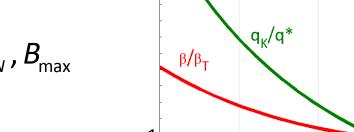

Plasma Physics Strategy - Magic

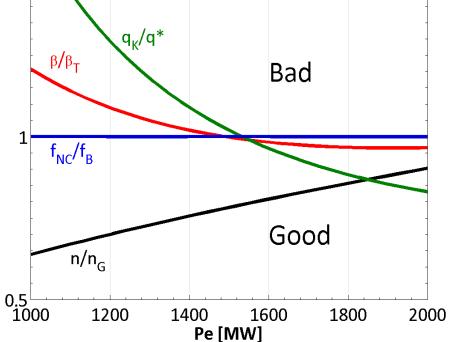

The Arnold Schwarzenegger Solution

- Raise *B*_{max}
- Improves plasma physics
- Raises V_{I} / P_{E}
- Forget optimization
- Set $f_{B} = f_{NC}$ as a constraint
- Success requires

 $B_{\max} = 13 T \rightarrow B_{\max} = 17.5 T$ HTS already exist (YBCO) $V_{I} / P_{E} = 0.79 \rightarrow V_{I} / P_{E} = 1.27$

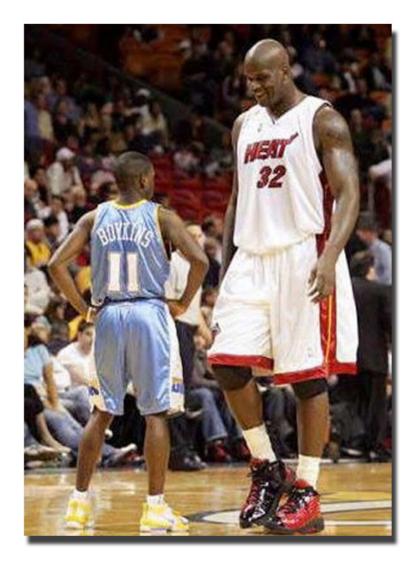
Engineering Strategy – Strong B

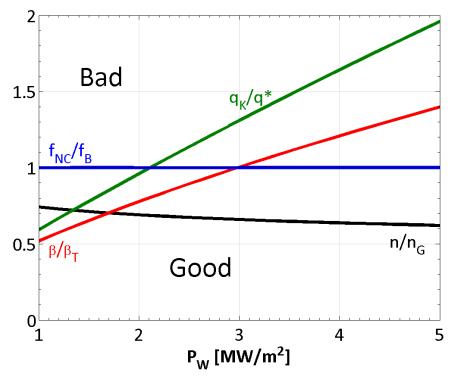



The Shaquille O'Neal Solution

1.5

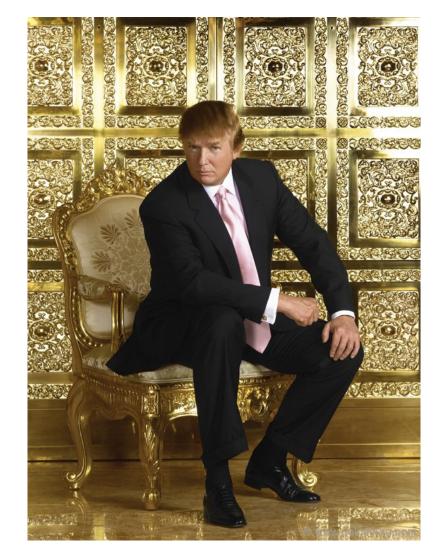
- Raise P_{r}
- Keep standard H, β_N, B_{max}
- Forget optimization
- Set $f_B = f_{NC}$ as a constraint
- A larger plant
- V_{I} / P_{E} about the same
- Success requires


 $P_{\scriptscriptstyle F} = 1000 \, MW \quad \rightarrow \quad P_{\scriptscriptstyle E} = 1530 \, MW$ $V_{_{I}} / P_{_{F}} = 0.79 \rightarrow V_{_{I}} / P_{_{F}} = 0.90$

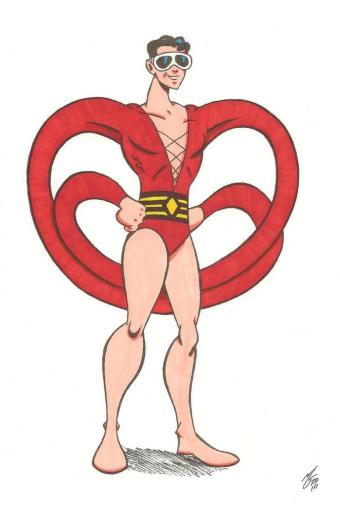

YES!

Utility Risk – Large Power Plant

The Donald Trump Solution


- Lower P_W
- Keep standard H, β_N, B_{max}
- Forget optimization
- Set $f_B = f_{NC}$ as a constraint
- A large, expensive plant
- Much larger V_{I} / P_{E}
- Success requires

$$P_{W} = 4 MW / m^{2} \rightarrow P_{W} = 2.1 MW / m^{2}$$
$$V_{I} / P_{E} = 0.79 \rightarrow V_{I} / P_{E} = 1.83$$


YES!

Utility Risk – Large \$/W

What if the tokamak doesn't work?

There is always the stellarator

