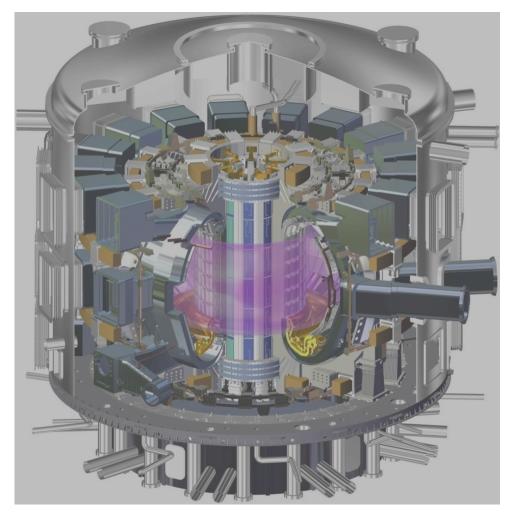

Multidisciplinary multiphysics simulation and analysis tool to support "Fusion Materials Science" research – Charge 3

USBPO Webinar Input to FESAC Panel on MFE Research Priorities

August 7, 2012



Multidisciplinary multi-physics (MDMP) simulation & analysis tool

- The need, in support fusion materials science research
 - Clarify benefit-cost-risk among options of internals, configuration, mission, performance
 - Inform research choices based on leverage
 - Can become tool needed to integrate research, FNSF designs, and eventually operation scenarios
- Help introduce a "fighting chance" for this research in ITER era

Fusion internals interact strongly and form option sets due to compatibility and safety

ITER, 500 MW

Examples:

A) Hot divertor surface with H₂O-cooled steel wall components (ITER)

1.W surface divertors

2.Be first wall

3.Water-cooled steel shield-blocks

4.Several TBM's each of $\sim 1m^2$ area

B) All-W PFC' s (EU)

1.Surface T = 750C - 1000C

2.High pressure He cooling

3. Solid or Li-Pb liquid breeder blankets

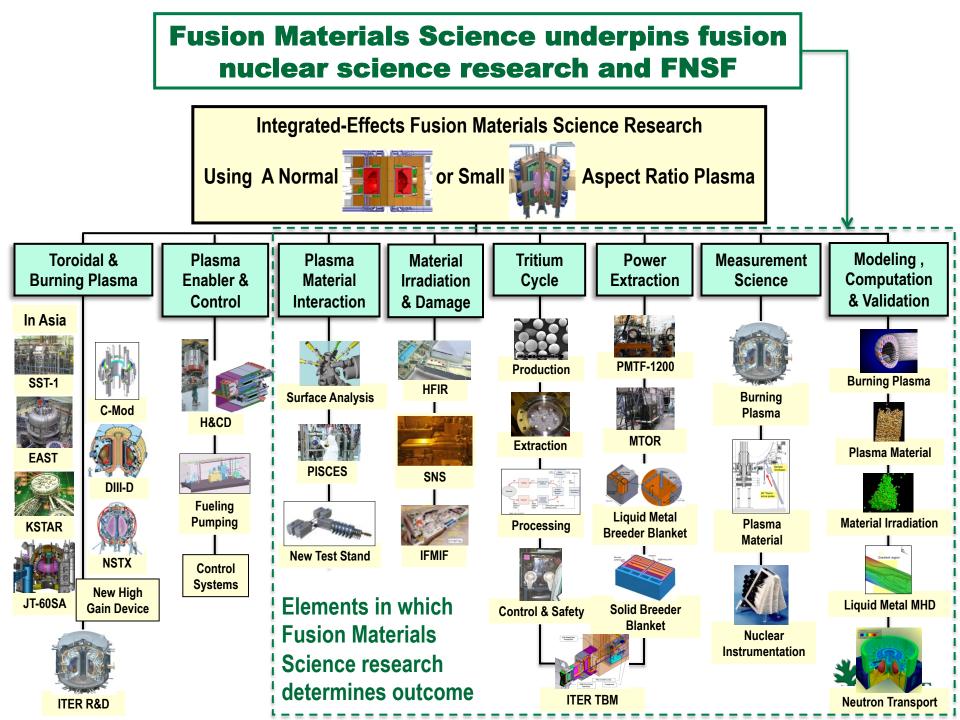
4. High power conversion efficiency

C) Large flowing liquid Li PFC's (US)

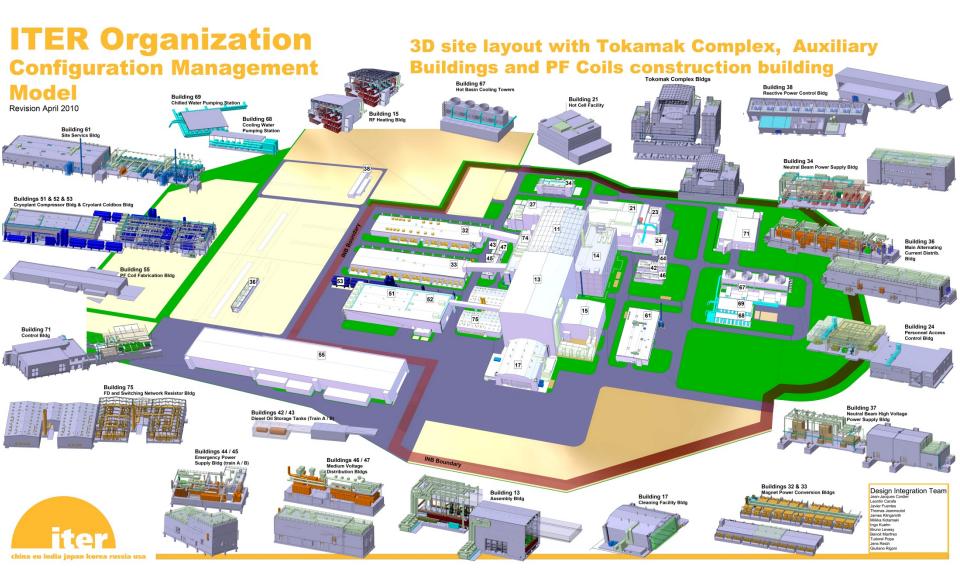
1.Surface T = 450C+, inlet T ~ 200C

2.He cooled internals

3. Avoid solid surface material damages


4.Need to remove Li-LiT on solid surfaces

D) Water-cooled solid breeder blankets (JN)


1.Super critical steam ~300C, He-cooled solid breeder

2.Extend LWR materials and technologies3.Standard power conversion efficiency

These options drive differing requisite research and FNSF

Fusion internals option further determines the support systems of the entire facility – ITER example

Need to estimate relative benefit-cost-risk of different internals options and the associated requisite research

MDMP simulation & analysis methodology has been successfully applied in aerospace & started for LWR's

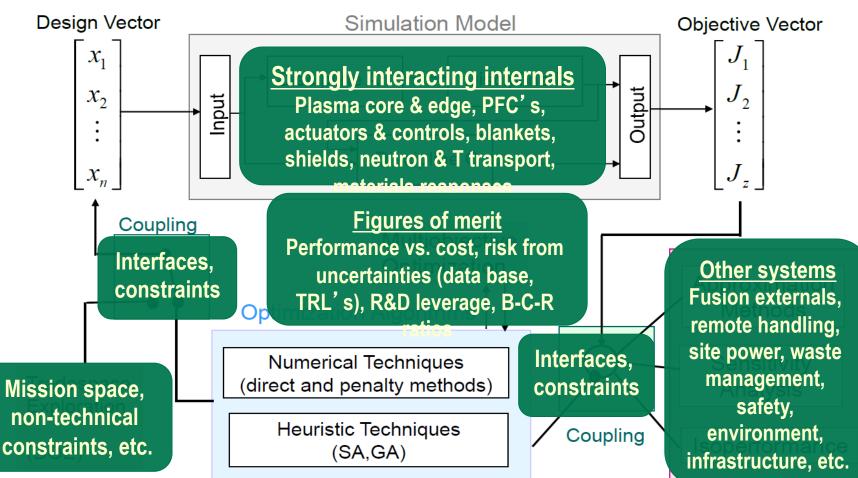
M esd

Exploration and Optimization MSDO Framework

16.888

ESO 77

Design Vector Simulation Model **Objective Vector** J_1 x_1 Discipline B **Discipline** A J_2 Output x_2 Input **Discipline** C x_n Coupling **Multiobjective** Optimization Approximation **Methods Optimization Algorithms** Numerical Techniques Sensitivity Tradespace (direct and penalty methods) Analysis Exploration **Heuristic Techniques** Coupling Isoperformance (DOE) (SA,GA)


6

This methodology applies to fusion systems and the associated R&D

Exploration and Optimization MSDO Framework

How does this tool support fusion materials science research?

- Goal: help quantify uncertain benefit-cost-risk for differing internals option sets and the associated research
 - Cover options of mission, configuration, performance, cost, research choices, impact due to uncertainties (risks)
 - Inform critical decisions
 - A vehicle to develop in-kind collaboration with SC, NE, NNSA
- Start soon to benefit early, from simple to complex, point model to detailed modeling, and link to available advanced simulation codes
- Work with practitioners of plasma dynamics & control and materials science research, and also other interested within DOE

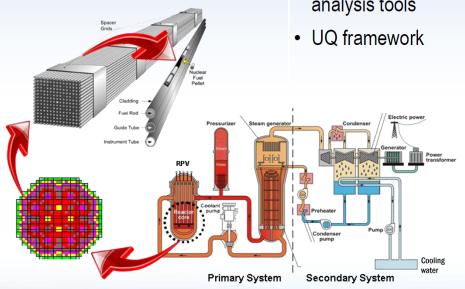
How could this possibly be realized within the constraints of Charge 3?

To introduce a "fighting chance" while addressing Charge 3

Fusion materials science research in ITER era (\$M/yr)	2015-2019 (preparation)	2020-2029 (research & project)	program	2030-2039 (integrated research)
I. MDMP tool	1-2 (part of III)	5 (part of I	V)	3 (part of IV)
II. Other DOE in-kind, equivalent	1	~10% of II	$\mathbf{I} + \mathbf{IV}$	$\sim 10\%$ of III + IV
III. Fusion materials science research	10 (requisite)	50 (interna	ls)	50 (integrated testing)
IV. FNSF	1-2 (metrics, mission and options)	50 (faciliti	es)	50 (operations)
V. Fusion plasma dynamics and control in-kind	Guidance to MDMP tool development	5 (plasma and contro		10 (plasma dynamics and control operation)
VI. International in-kind, equivalent	Possibly, 1	80 (45% o	f VIII)	83 (45% of VIII)
VII. Total DOE (II + III + IV + V)	12-13	115		120
VIII. Total level of effort equivalent (VI + VII)	13-14	195		203

- Assume readiness to start FNSF (integrated research) in mid-2020's
- Multiple internals options drive FNSF modularization and research flexibility (measure, discover, understand, improve, re-measure).
- Constrained fund likely leads to "adjacent possible" FNSF options

Multidisciplinary multi-physics (MDMP) simulation & analysis tool has high leverage


- Supports fusion materials science research
 - Clarifies benefit-cost-risk among options of internals, configuration, mission, performance
 - Informs research choices based leverage
 - Can become tool needed to integrate research, FNSF designs, and eventually operation scenarios
- Helps introduce a "fighting chance" for this research in ITER era
- Has broader potential applications
 - Can retool for other fusion energy systems / facilities
 - With early progress, can inform ITER operation and upgrade choices

CASL vision: Create a virtual reactor (VR) for predictive simulation of LWRs

Leverage

- Current state-of-the-art neutronics, thermal-fluid, structural, and fuel performance applications
- Existing systems and safety analysis simulation tools

Develop

- New requirements-driven physical models
- Efficient, tightly coupled multiscale/multiphysics algorithms and software with quantifiable accuracy
- Improved systems and safety analysis tools

Deliver

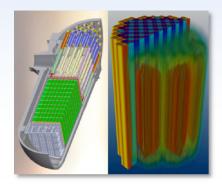
- Toolkit for predictive simulation of physical nuclear reactors
- Architected for platform portability ranging from desktops to DOE's leadership-class and advanced architecture systems (large user base)
- Validation basis against 60% of existing U.S. reactor fleet (PWRs), using data from TVA reactors
- Base M&S LWR capability

CASL mission: **Develop** and apply the VR to address 3 critical performance goals for nuclear power

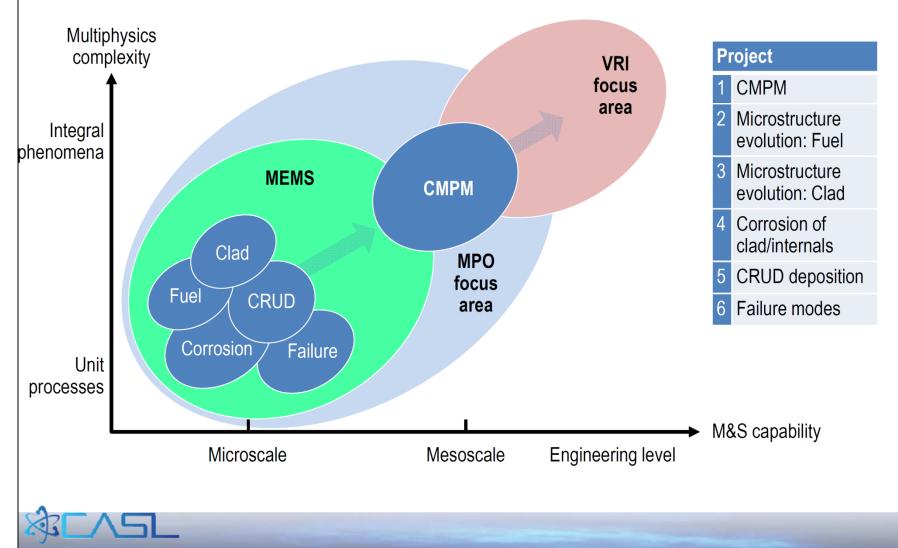
Reduce capital and operating costs per unit energy by:

- Power uprates
- Lifetime extension

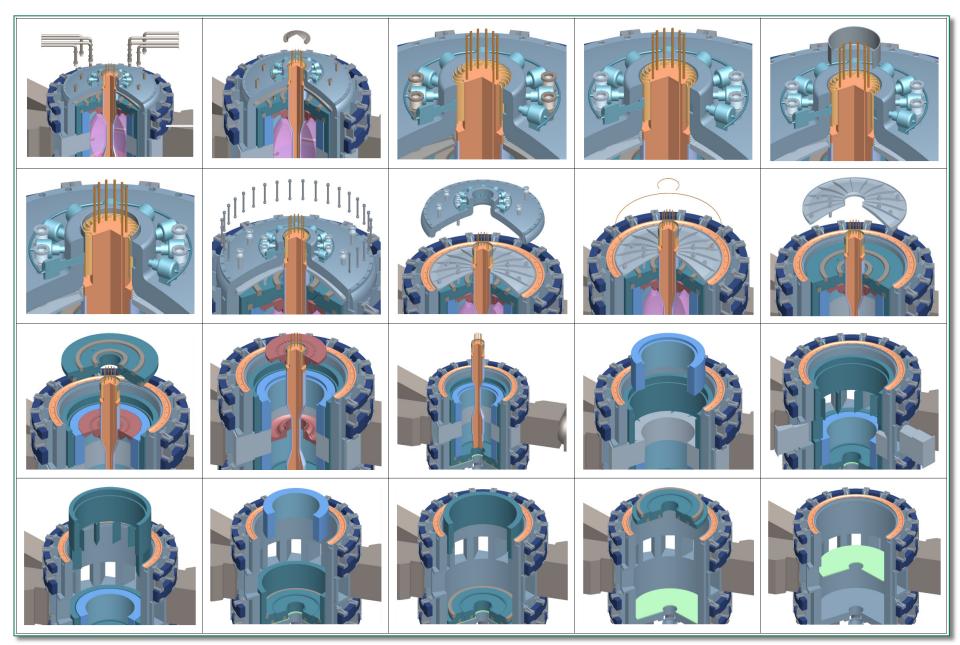
Reduce nuclear waste


volume generated by enabling higher fuel burnups

by enabling high-fidelity predictive capability for component and system performance from beginning of life through failure


"Multiphysics Integrator" simulates reactor core

Virtual Environment for Reactor Analysis (VERA) A code system for scalable simulation of nuclear reactor core behavior


 Flexible coupling of physics components Toolkit of components Not a single executable Both legacy 	 Rigorous software processes 	 Development guided by relevant challenge problems Broad applicability 	 Scalable from high-end workstation to existing and future HPC platforms Diversity of models, approximations, algorithms 			
and new capability – Both proprietary and distributable (th n CH		Thermal Hydraulics (thermal fluids) Structur Mechanic ohysics grator				
Multi-resolution Geometry Mesh Motion/ Quality Improvement Multi-mesh Management						

Nuclear materials science underpins LWR performance

MPO science innovation is micro-meso coupling in both complexity of physical phenomena and modeling and simulation capability

Example of FNSF internals modularity & flexibility to address options, with low support-structure lifetime-dpa

