DIII-D 10-Year Vision: Developing the Scientific Basis for the Burning Plasma Era and Fusion Energy Development

Our Vision of 10-Year US Program Plan Targets ITER Operation and Start of FNSF Design in First of Half of 2020

SAN DIEGO

DIII-D Initiatives Target Critical Gaps in Physics Foundations Needed to Enable ITER and FNSF Success

- ITER design finalized; need to prepare for the burning plasma regime
- FNSF performance elements demonstrated; critical gaps remain to begin design activity

DIII-D Initiatives:

1. Prepare for Burning Plasmas

Deliver predictive understanding of the impact & optimization of burning plasma conditions on plasma performance

2. Determine Steady-State Path

Provide requirements for achieving efficient, high performance, steady-state operation in FNSF

3. Develop PMI-Boundary Solution

Develop and validate solutions for heat flux control including transients in FNSF and future devices

DIII-D upgrades will provide a unique capability to individually AND simultaneously develop the science of performancedefining features of steady-state, burning plasma operation

High Power EC and Configurable NBI Will Provide Platform to Assess Physics of the Burning Plasma Regime

I. Prepare for Burning Plasmas

Electron

Heating

Small

ELMs

Steady

State

Low Torque

Heat Flux

Mitigation

Self-

Driven

- Challenge: Transport & stability predicted to change with significant α heating in burning plasmas
 - Dominant electron heating, low torque and particle input
- DIII-D Upgrade: High power electron heating and balanced NBI torque to access this physics at high β_{N}
 - Physics evaluation and optimization of ITER & FNSF scenarios

H&CD Upgrades Will Provide Sufficient Capability to Qualify Candidate Scenarios Required for FNSF Mission Objectives

II. Validate Steady-State for FNSF

Advanced Divertor and New PFC Material Upgrades Will Provide Capability to Develop Core-Edge Solutions for FNSF

III. Boundary Solutions

- Challenge: Develop and qualify plasma dissipation and PFC solutions that achieve long component lifetime while maintaining acceptable core performance
- DIII-D Upgrade: Provide integrated capability to assess divertor geometry, hot wall operation, and innovative PFCs
 - Advanced divertor: Achieve detachment at lowest possible density, highest possible β_{N}
 - Heated divertor: Assess impact of recycling dynamics
 - Reactor relevant materials: Test new solutions developed by US materials community

Provides potential to "leapfrog" state-of-theart in plasma dissipation and PFC solutions

3D Upgrade will Enable Extension of ELM, Rotation, Error Field, and RWM Control to FNSF Conditions

I. Prepare for Burning Plasmas

II. Steady-State for FNSF

III. Boundary Solutions

- Challenge: Deliver robust ELM control with minimal impact on stability and confinement
 - Especially critical at low torque/rotation expected in ITER/FNSF
- DIII-D Upgrade: Enhance spectral flexibility to identify critical spectral features and enable multi-harmonic application

New 3D coil Set

Rotatable, Tunable to n=3,4

Capability	n=1	n=2	n=3	n=4	9=u
RMP ELM Suppression		Х	Х	Х	X
NTV Drive			Х	Х	
Error Field Correction	Х	Х	Х		
RWM Control	Х	Х	Х		
Simultaneous Optimization	х	Х	Х		

Provides basis for optimizing use of 3D fields for transient control simultaneous with high performance operation

Physics Provided by New Capabilities Will Enable Strong US Partnership in International Programs

Schedule Targets Completion of Full Set of Upgrades In Time to Exploit for ITER Preparation and FNSF Design

Phase I Focuses on Increasing Power/Flexibility for Core Scenario Development: Phase II on Core-Edge Coupling

Entire Upgrade Package Can Be Implemented on Modest Incremental Funding Over 6 Years

Upgrade Plan Will Enable The US to Remain the World Leader in Key Areas Identified by ReNeW

	ReNeW Thrusts (with Prioritization from 2012 Priorities Panel Report) Anticipated DIII-D Position in 2020 A=Definitive World Leader; B=World Leader; C=Strong Contributor: D=Moderate Contributor		Present Capabilities	2020 with No Upgrades	EC 10.5 MW	Toroidally Steerable NBI	Off-Axis NBI	NBI Power	Helicon	3D Upgrades	Advanced Divertor	All Upgrades
Burning Plasmas	3 (Mid)	Understand the role of alpha particles in burning plasmas	В	С	В	В	В	В	В	В		В
	4 (Mid)	Qualify operational scenarios and the supporting physics basis for ITER	В	С	Α	В				В	Α	Α
	6 (High)	Develop predictive models for fusion plasmas supported by theory and challenged with experimental measurement	В	С	В	В	В			В		В
Steady- State	5 (Mid)	Expand the Limits For Controlling and Sustaining Fusion Plasmas	Α	в	Α	Α	A	Α	Α			A
	8 (Low)	Understand the highly integrated dynamics of dominantly self-heated and self-sustained burning plasmas	Α	в	Α	Α	Α	A	Α	В		A
Boundary Solutions	2 (High)	Control transient events in burning plasmas	Α	В		Α				Α		Α
	9 (High)	Unfold the physics of the boundary layer plasma	В	С		В	В	В	В	С	Α	Α
	10 (High)	Decode and advance the science and technology of plasma-surface interactions	С	D				В		В	В	В
	12 (Low)	Demonstrate an integrated solution for plasma-material interfaces compatible with an optimized core plasma	D	С	В	В	В	В		В	Α	Α
Where we will be Potential in 2020 with are today In 2020 w/ no Upgrades Full set of Upgrades												

NATIONAL FUSION FACILITY SAN DIEGO

Upgrade Plan Will Enable The US to Remain the World Leader in Key Areas Identified by ReNeW

	(wi	ReNeW Thrusts ith Prioritization from 2012 Priorities Panel Report) Anticipated DIII-D Position in 2020 A=Definitive World Leader; B=World Leader; C=Strong Contributor; D=Moderate Contributor	Present Capabilities	2020 with No Upgrades	EC 10.5 MW	Toroidally Steerable NBI	Off-Axis NBI	NBI Power	Helicon	3D Upgrades	Advanced Divertor	All Upgrades
Burning Plasmas	3 (Mid)	Understand the role of alpha particles in burning plasmas	В	С								В
	4 (Mid)	Qualify operational scenarios and the supporting physics basis for ITER	В	С							Α	Α
	6 (High)	Develop predictive models for fusion plasmas supported by theory and challenged with experimental measurement	В	С								В
Steady- State	5 (Mid)	Expand the Limits For Controlling and Sustaining Fusion Plasmas	A	В								A
	8 (Low)	Understand the highly integrated dynamics of dominantly self-heated and self-sustained burning plasmas	A	В								A
Boundary Solutions	2 (High)	Control transient events in burning plasmas	Α	В								Α
	9 (High)	Unfold the physics of the boundary layer plasma	В	С							Α	Α
	10 (High)	Decode and advance the science and technology of plasma-surface interactions	С	D							В	В
	12 (Low)	Demonstrate an integrated solution for plasma-material interfaces compatible with an optimized core plasma	D	С							Α	Α
		Where are too	we day	W In 202	here 20 w/	we wil no Up	l be arade	es	Poten Full s	tial in et of l	2020 v Jparad	n with des

NATIONAL FUSION FACILITY

DIII-D Upgrade Is a Cost Effective Means to Deliver US Scientific Leadership in Critical Areas of Fusion Energy Development

• Leverages \$1B investment in existing world-class facility

- Extensive, flexible control tools
- Comprehensive diagnostic set

Scientific

Leadership

- Delivers new capabilities that can transform the landscape of fusion science
 - Burning plasma transport
 - Self-consistent high β steady states
 - Detached divertor with transients eliminated
- Provides the foundations for success in US next-step devices
 - Burning plasmas in ITER
 - Long-pulse, high performance operation in FNSF

A world-class US fusion user facility providing exciting research opportunities to scientists worldwide