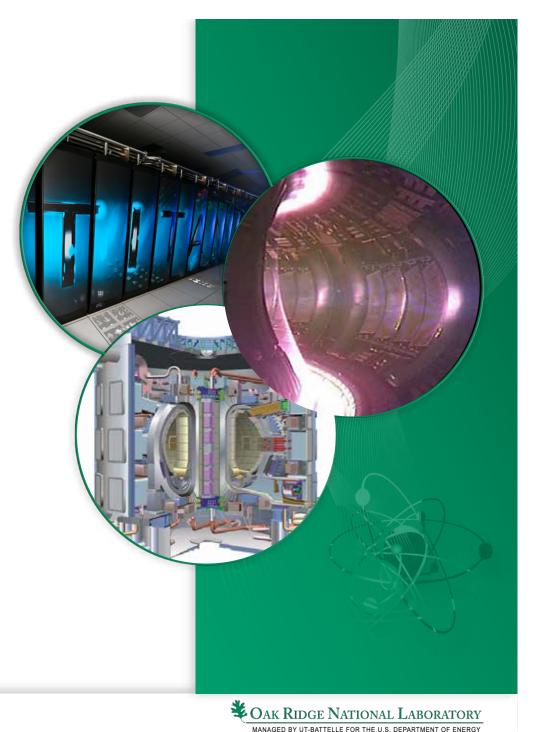
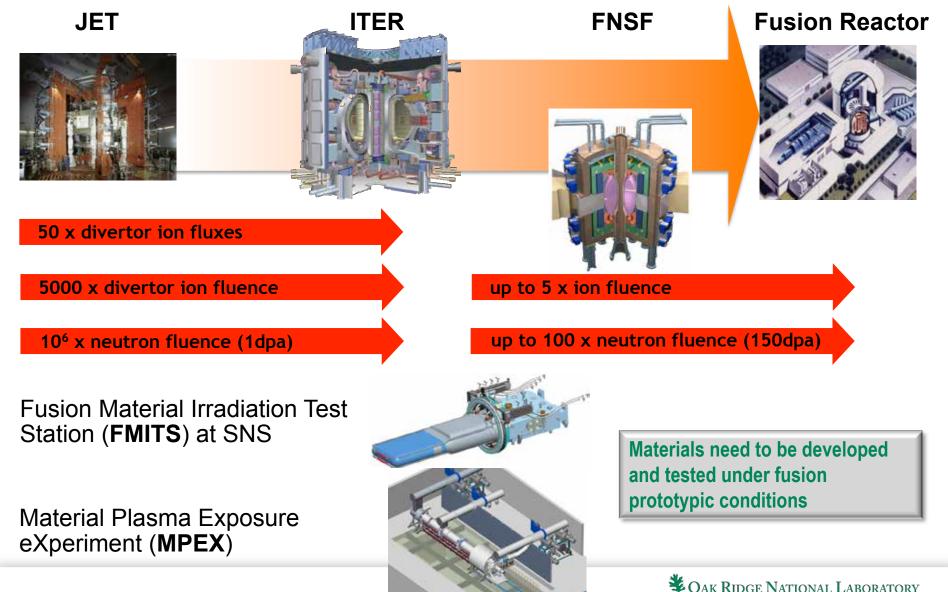
A Materials Facilities Initiative -


FMITS & MPEX

D.L. Hillis and ORNL Team


Fusion & Materials for Nuclear Systems Division

July 10, 2014

Challenges for materials: fluxes and fluence, temperatures

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

2 Materials Facilities Initiative

Material facilities initiative is a response to community requests:

Greenwald report identified several significant gaps related to PMI, high heat flux components, tritium retention and materials development: *G7, G9, G10, G11, G12, G13*

Greenwald report identified area of *Plasma-wall interactions*, where investments could sustain strength and where investments could provide new opportunities for U.S. leadership: *Plasma facing components* and *Materials*

ReNeW theme 3 (Taming the Plasma-Material Interface), **Thrust 10** (Decode and advance the science and technology of plasmamaterial interactions) identified the need for dedicated facilities:

Upgrade existing laboratory facilities and test stands, and build new facilities capable of extending plasma-surface interaction parameters closer to conditions expected in fusion reactors, including the capability to handle tritium, liquid metals, and irradiated materials.

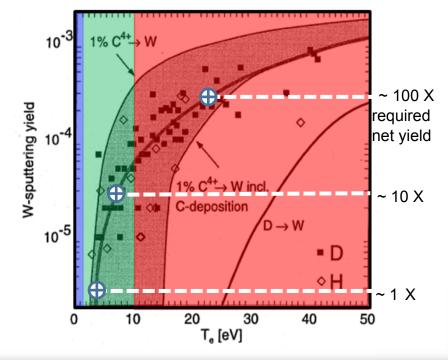
&

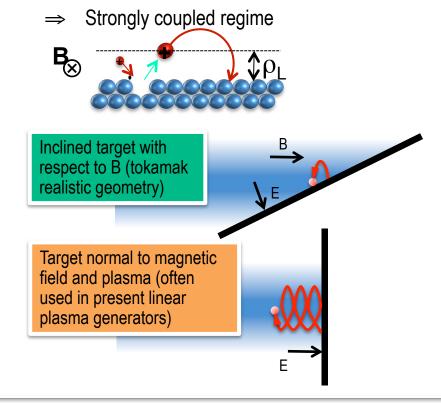
Build large-size test stands where full-scale internal component tests and design validations can occur.

FESAC panel report (*Zinkle***)** on Materials Science and Technology Research Opportunities Now and in the ITER Era recently identified the need of an

Upgrade and/or New Build of linear plasma test stands with medium scale facilities

FESAC panel report (Rosner) on priorities for the fusion program ranks


Thrust 10 (Decode and advance the science and technology of plasma-surface interactions) among the 5 highest priority initiatives

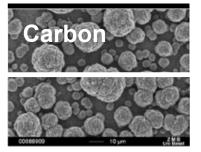

Demand of high plasma performance and high PFC lifetime requires strong re-deposition to ensure low net erosion

Divertor plasma temperature in the ~ 10 eV range where GROSS sputtering yield of tungsten is ~ 10 X greater than the required NET sputtering yield.

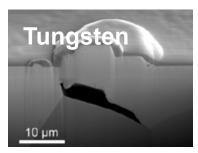
Reactor divertor lifetime $\sim 10^8$ s requires net erosion rate of 10^{-6}

+ High divertor plasma density for prompt return of sputtered atoms to the surface.

Accelerated lifetime tests need a device able to provide significant fluence (> 10³⁰ m⁻²) in realistic geometry

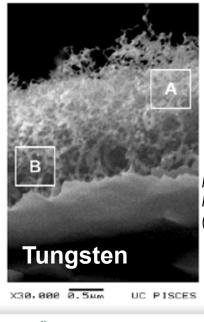

High fluence, long pulse plasmas will lead to surface morphology changes

Increase of density and energy to the surface leads to increased surface morphology changes and hence influences:


- Surface area: Surface roughness
- Surface potential (unipolar arcing may occur)
- Surface temperature (loosely bound layers)
- Surface chemical activity

This all will have consequences for

- Chemical and physical erosion yield
- Relation between gross erosion and net erosion
- Dust production might occur due to macroscopic erosion of surface structure
- Complexity will strongly change our understanding of erosion processes
- Need for long pulse PMI device, like MPEX

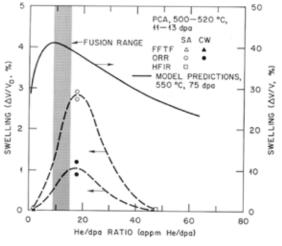

K. Bystrov et al., J. Nucl. Mater. 415 (2011) S149

S. Lindig et al., T145 (2011) 014039

W nanostructure can delaminate (due to unipoloar arcing) and possibly create W dust of nm size

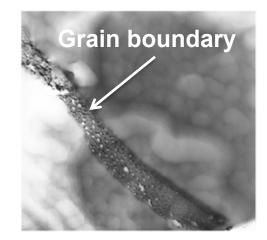
M. Tokitani et al., Nucl. Fusion 51 (2011) 102001

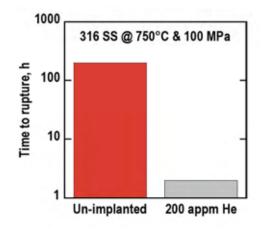
M.J. Baldwin et al., Nucl. Fusion 48 (2008) 035001



Fusion irradiation conditions include synergistic PMI and neutron irradiation

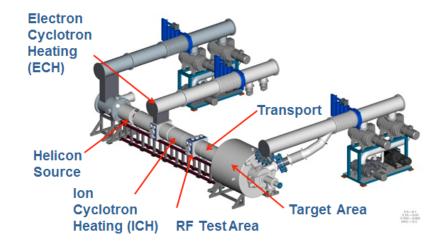
- 14 MeV neutrons, high He/dpa
- up to 150 dpa for blankets
- up to 50 dpa for divertor


Neutron irradiation damage	Consequences on PMI
Thermal conductivity	Temperature operation window, less tolerance to transient heat loads, erosion yield
Chemical composition (transmutation)	Hydrogen retention, thermal conductivity indirectly
Interstitials, vacancies, dislocations, voids	Hydrogen retention
Swelling and irradiation creep at intermediate temperatures	Tolerance in PFC alignment will become larger, hence power handling capability lower
Loss of high-temperature creep strength	Reduced temperature operation window
Ductile to Brittle Transition Temperature	Reduced temperature operation window
He, H embrittlement	Erosion and dust production will be enhanced
Synergies of micro- structural changes between neutron and plasma irradiation	?????


Accumulation of He can have major implications for the integrity of plasma-facing- and structural-components

Voids in F82H

9dpa, 380 appm He


OAK RIDGE NATIONAL LABORATORY

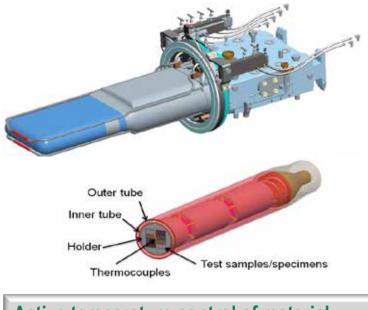
6 Materials Facilities Initiative

MPEX

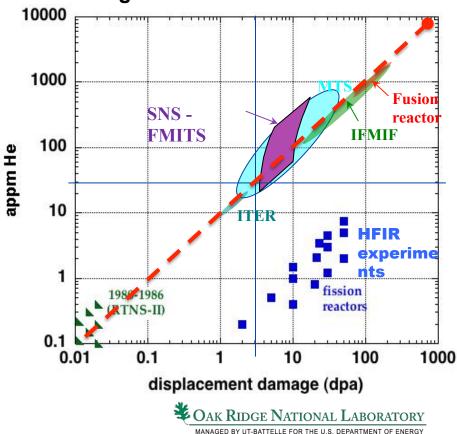
- Direct response to thrust 10 in ReNeW
 - $\Gamma > 10^{23}$ m⁻²s⁻¹, P ~20MW/m⁻², inclined target
 - B > 1T
 - steady-state (up to 10^6 sec)
 - > 600°C surface temperature
 - large plasma area ~100 cm²
 - Liquid metal targets: Ga, Sn, Li
 - Neutron-irradiated material samples with significant dpa
 - Independent control of T and n at target
- Project cost: ~ \$29M duration 5 years
- Upgrade (irradiated materials): ~ \$5M
- Operation costs: \$6 M / yr

Opportunity for world leadership

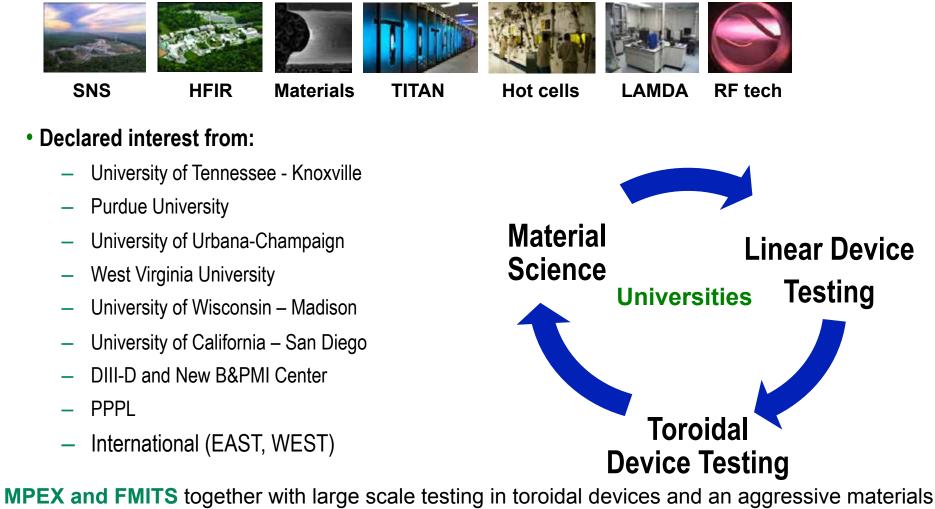
Unique due to RF heating approach 800 kW will make it most powerful steady state linear plasma device world wide


Proto-MPEX: first plasma May 28th Installed RF power: 330 kW

FMITS


- SNS target station modification
 - Cost effective approach to study high He/dpa ratio
 - Simple modification to SNS target
 - Leverages on SNS B\$ class facility
 - Project cost: ~ \$14M, duration 3 years
 - Operation cost: ~ \$1M / experiment

Active temperature control of material samples during irradiation


Summary of Helium and Displacement Damage Levels for Ferritic Steels

8 Materials Facilities Initiative

Fusion materials development is an opportunity for US leadership, including FMITS and MPEX as user facilities

Initiative leverages on ORNL's world leading capabilities

MPEX and FMITS together with large scale testing in toroidal devices and an aggressive materials development program (PFCs) will pave the way for a next step Fusion Nuclear Science Facility.

