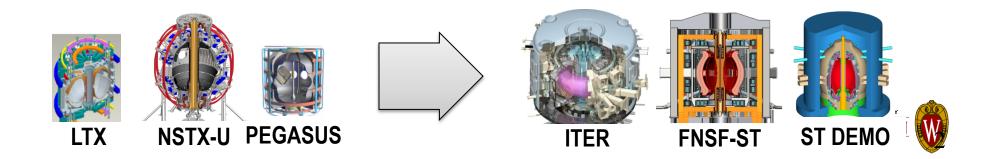
Initiatives in Non-Solenoidal Startup and Edge Stability Dynamics at Near-Unity Aspect Ratio

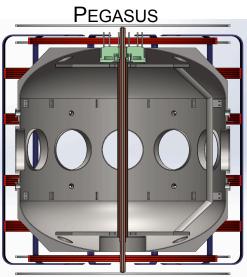
> R. J. Fonck for the PEGASUS Group University of Wisconsin-Madison

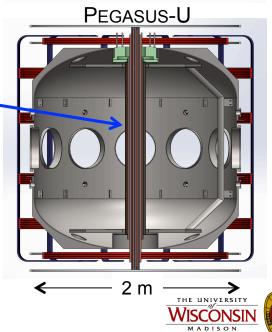

Presented to Public Meeting of the 2014 FESAC Strategic Planning Subpanel Gaithersburg, MD June 3, 2014 July 8, 2014

U.S. ST Goal: Accelerate Fusion Development

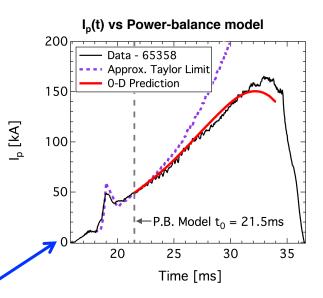
- Advance ST as Fusion Nuclear Science Facility
 - NSTX-U: physics + scenario basis for FNSF-ST (also ST DEMO)
 - PEGASUS-U, NSTX-U: non-solenoidal start-up: helicity injection, EBW, +...
- Develop solutions for plasma-material interface
 - LTX, NSTX-U: liquid Li for very high confinement, liquid metal PFCs
 - NSTX-U: novel divertors: snowflake/X, detachment, vapor shielding
- Explore unique ST parameter regimes to advance predictive capability for ITER and beyond
 - PEGASUS-U, NSTX-U: high β , toroidicity, MHD / transport validation, ELMs
 - NSTX-U: non-linear Alfvénic modes, electromagnetic turbulence

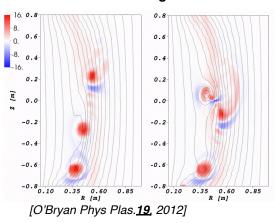
Tokamak Physics at Low A \rightarrow 1: Advancing Fusion Energy Sciences

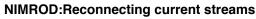

- PEGASUS: Ultra-Low-A ST
 - $R_0 \leq 0.40 \text{ m, a} \sim 0.35 \text{ m, B}_{TF} \sim 0.15 \text{ T,}$ $I_p \leq 0.25 \text{ MA, } \Delta t_{pulse} \sim 25 \text{ ms}$
 - Grad student operated and maintained
- Non-solenoidal startup
 - Local helicity injection
- Advanced Tokamak Physics
 - ELM / H-mode / Neoclassical
- Physics of High I_p/I_{TF}
 - Toroidicity limits of stability



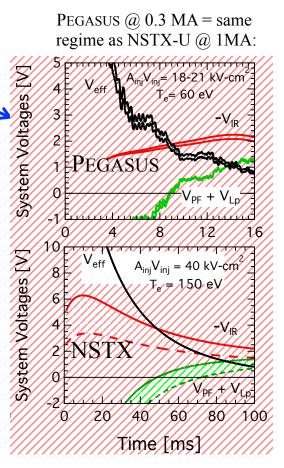
PEGASUS-U Initiative: Advancing Non-Solenoidal Startup and AT Physics


- Mission
 - Physics and technology of LHI
 - For NSTX-U and beyond (FNSF)
 - Nonlinear ELM dynamics, H-mode physics
 - Tokamak stability limits: A~1 high β_T regime
- Facility enhancements
 - New centerstack assembly____
 - B_{TF} increases 5x
 - $\Delta t_{pulse} \sim 100 \text{ msec}$
 - V-sec increases 6x (solenoid from PPPL)
 - Improved separatrix operation
 - NSTX-U relevant LHI injector arrays
 - Helicity input rate increases 2x
 - Diagnostics: multipoint TS; CHERS via DNB




Local Helicity Injection (LHI) Uses Strong Current Sources in SOL to Inject Helicity & Drive Ip

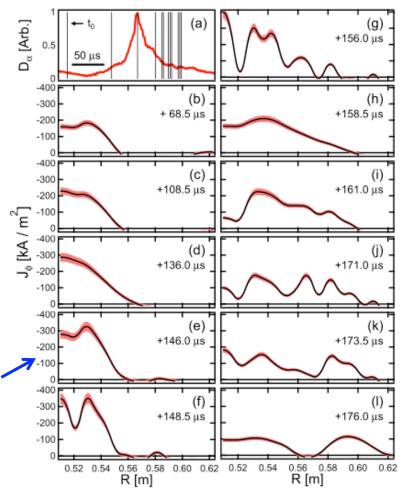
- Unstable streams relax to "tokamak"
 - Taylor relaxation, helicity conservation limit I_p
 - To date: $I_p \sim 0.18$ MA with $I_{inj} \sim 6$ kA
 - Extensive current source technology development
- Approaching predictive I_p(t) model
 - Energy conservation; lumped parameter model
- Details of LHI dynamics emerging
 - NIMROD: Reconnecting current streams inject ______
 axisymmetric current rings into core plasma
- Technique scales to NSTX-U, FNSF



PEGASUS-U Initiative: Develop & Validate LHI-Startup for NSTX-U and Beyond

- Critical physics issues
 - Confinement behavior and helicity dissipation.
 - Edge λ =J/B, J penetration processes
 - Injector geometry optimization
- Technology development
 - Long-pulse, large-area injectors in high B_{TF}
- Models & predictive understanding
 - 0-D Power Balance $I_p(t)$ model
 - NIMROD
 - TSC

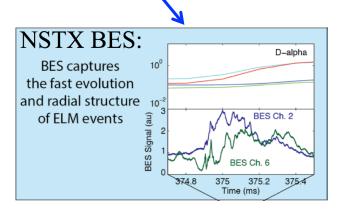
"Pagoda-style" injectors sustain $V_{inj} \le 1.5$ kV, $I_{inj} \sim 2$ kA with no PMI effects within 1-2 cm of LCFS



A~1 Access to AT Physics: H-mode, J_{edge} Dynamics, High- β , etc.

- Low $B_{TF} => very low P_{L-H}$
 - With unique diagnostic access
- Ohmic H-mode plasmas
 - $H_{98} \sim 1$; 5-10x predicted P_{L-H}
 - Measured pedestal in $J_{edge}(R,t)$
- ELM physics studies
 - J(R,t) evolution through ELM collapse
 - Type I: n = 5-15; Type III: $n \sim 1$
 - Opposite high-A plasmas

PEGASUS-U Initiative: Nonlinear ELM Studies and H-mode Physics


- P(r,t), J(r,t), $v_{\phi}(r,t)$ through ELM cycles
 - Nonlinear evolution of magnetic structures
- ELM, H-mode modification and mitigation
 - Vary $J_{edge}(r)$, modify edge v_{ϕ} and shear via LHI
- Synergistic studies with BES on NSTX-U, DIII-D
 - Entry point for grad students to large facilities
- $\begin{bmatrix} s \\ 20 \\ 20 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\$

27.35

27.30

Nonlinear Evolution of ELM Magnetic Toroidal Modes in PEGASUS:

- Models to test
 - NIMROD
 - BOUT++
 - EPED

Comparison of J(r,t), $N_e(r,t)$, $T_e(r,t)$ on Pegasus to detailed $N_e(r,t)$ on NSTX-U will aid interpretation of BES ELM studies on NSTX-U & DIII-D

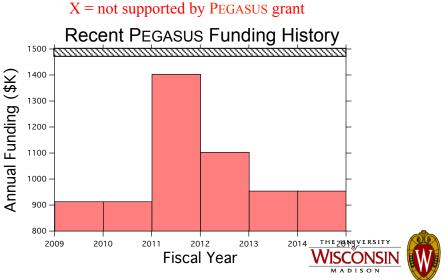
27.40

ms

27.45

27.50

PEGASUS-U Enables Further Initiatives for Latter Part of Decadal Period


- Non-solenoidal startup
 - **PEGASUS-U, NSTX-U LHI program** for ~ 1 MA startup demonstration
 - New non-solenoidal startup studies: Stellarator windings; Iron core, EBW...
- Current sustainment with LHI via MHD control
 - Passive or active injector feedback system
- ELM modification and mitigation
 - C-pellet injection for tests of models for ELM-pacing (w/ORNL)
- Neoclassical physics tests
 - J_{BS} model tests: Test Sauter model if sufficient edge pressure achieved
- High β_t plasma studies at $I_p/I_{TF} \ge 3$

Modest Staff and Budgets with Collaborations Enable an Aggressive Program

- Pegasus-U requires ~ \$1.5M/yr
 - Equipment and supplies funding
 - 2 Scientists; Full-time support staff
 - 1-3 more grad students; undergrad team
- Present staffing is sub-critical
 - 1/3 Faculty; 1 scientist
 - 2/3 Engr; 1 tech; 2/3 instrument tech
 - 6 graduate students; 2-4 undergrads
- Growing collaborations
 - PPPL: Solenoid; DNB; LHI; Iron core*
 - ORNL: H_{α} diag.; Pellet pace &/or EBW*
 - U Tokyo: Magnetics probe array
 - DIII-D & NSTX-U: BES programs
 (* = future?)

PEGASUS-U Initative Contributes to Many ReNeW Research Thrusts

- Primary Areas of Contribution
 - Thrust 16: Develop the spherical torus
 - Range of V&V activities in parallel with LHI startup, ELM, and high- β studies
 - Further initiatives in new nonsolenoidal startup, sustainment, ELM pacing, etc.
 - Thrust 18: Achieve high performance with minimal field
 - Stabilitylimits at extreme toroidicity and high I_p/I_{TF} (>2)
- Additional Areas of Contribution
 - Thrust 2: Transient events in burning plasmas
 - Edge stability studies; nonlinear ELM dynamics
 - Thrust 9: Unfold the physics of boundary-layer plasmas
 - Pedestal evolution
 - Peeling-ballooning studies and experimental verification of models
 - Thrust 6: Develop predictive models for fusion plasmas
 - Potential for detailed tests of Sauter neoclassical model
 - Thrust 10: Technology of plasma-surface interactions
 - · Development of LHI injectors for high-performance plasma edge

Studies at A~1 in PEGASUS-U will Advance Fusion Energy Sciences

- Significant progress with non-solenoidal startup of ST
 - Increasing understanding of LHI physics to project towards MA-class startup
 - Developing advanced edge current sources
- Leveraging low-A regime to test edge stability theory
 - Peeling mode characteristics consistent with theory
 - Tests of ELM physics
- Many possibilities for further initiatives
 - e.g., LHI J(R,t) control and H-mode support high- β studies at tokamak limits
- A cost-effective, strong platform for student education in fusion science and technologies

