

Present State and Future Plan of MCF Research in China

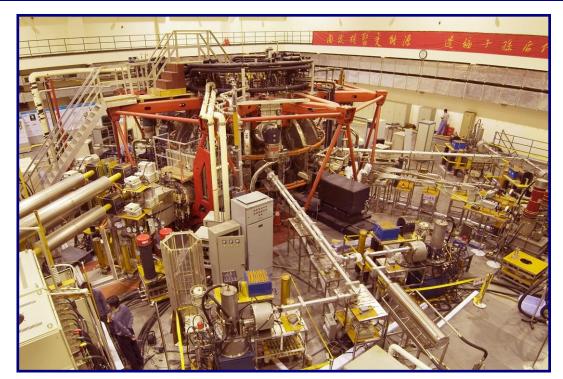
Jiangang LI

Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

Outline

HL-2A Tokamak

EAST Tokamak


- > Physical engineering capability
- > Main experimental results
- > Research Plan in next 2-5 years

ITER-CN Activities

Future Plan of CN-MCF program

Summary

Status of HL-2A

•*R*: 1.65 m

•a: 0.40 m

• *Bt:* 1.2~2.8 T

• Configuration:

Limiter, LSN divertor

• *lp*: 150 ~ 480 kA

• ne: $1.0 \sim 6.0 \times 10^{19} \,\mathrm{m}^{-3}$

• *Te*: 1.5 ~ 5.0 keV

• *Ti*: 0.5 ~ 1.5 keV

Auxiliary heating:

ECRH/ECCD: (3+2)MW

(6/68 GHz/500 kW/1 s)

modulation: 10~30 Hz; 10~100 %

NBI(tangential): 1.5 MW

LHCD: 1 MW

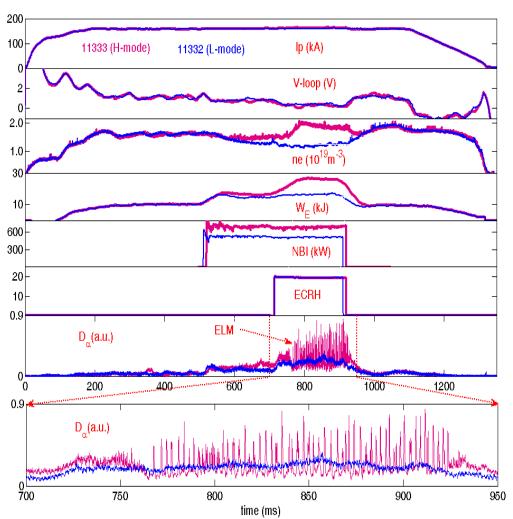
(2/2.45 GHz/500 kW/1 s)

Fueling system (H_2/D_2):

Gas puffing (LFS, HFS, divertor)

Pellet injection (LFS, HFS)

SMBI (LFS, HFS)


LFS: $f = 1 \sim 80$ Hz, pulse duration > 0.5 ms

gas pressure < 3 MPa

3MW ECRH ,68GHz/1s NBI :1.5 MW 40-60 keV,

ELMy H-mode discharges were achieved on HL-2A tokamak

HL-2A Tokamak

EAST Tokamak

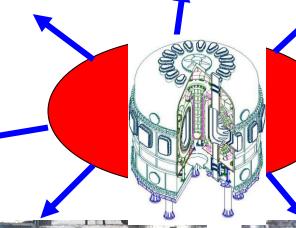
- > Physical engineering capability
- > Main experimental results
- > Research Plan in next 2-5 years

ITER-CN Activities

Future Plan of CN-MCF program

Summary

EAST: 5.5 years, 30M\$ (TPX)



CICC & magnet design and fabrication

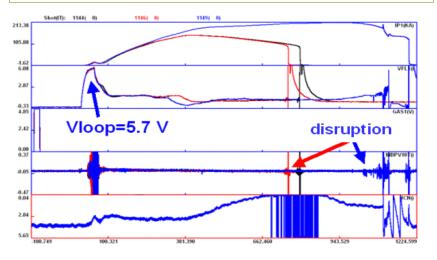
Control system

ICRH & LHCD system

Vacuum pumping system

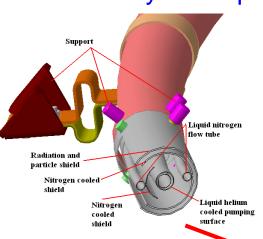
SC magnet test

2kW/4.5K Cryogenic & refrigerator system



210MW Power supply system

2006-9-26, 1st Plasma

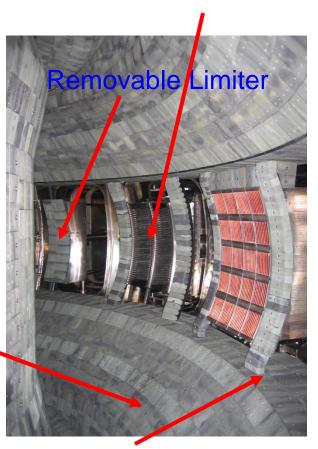



Key elements in-vessel

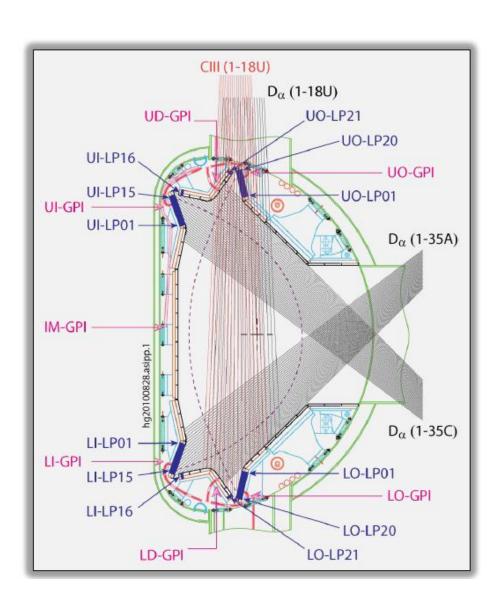
Internal Cryo-Pump

75,600L/S for D2 With DIII-D

- •Actively-cooled PFC (~9000 tiles)
- •Internal Cryo-Pump
- •LHCD: 2.45GHz, 2MW
- •ICRF: 30-110MHz,1.5MW
- •Magnetic sensors
- 2 Removable limiter



High heat flux region 2MW/m²


Total 37 flux loop

ICRH antenna

LHCD antenna

Main diagnostics (~50, IFS, GA, PPPL,ORNL)

Key Profiles

Te, Ti, ne, Zeff, Prad, Ha

Advance diagnostics

Thomson scattering (25)

TXCS,

PXCS,

ECEI (384)

Dual-polarization reflectometer

ECE(32)

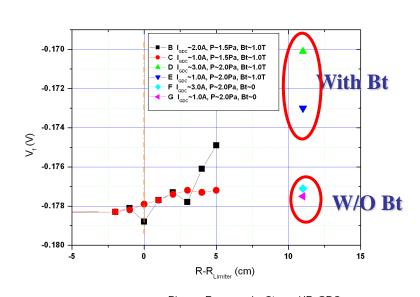
Fast Moving LP

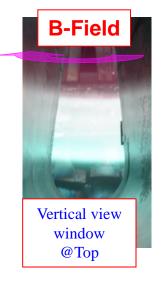
GPI, CO2 scattering

Edge diagnostics

New Method: HF_GDC

•Power Supply: U=1.0KV,

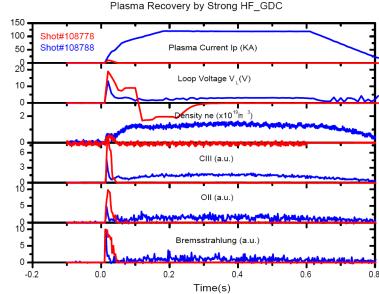

f=100KHz, I~0.5-1.0A


•Work Gas: Ar, He, H2.

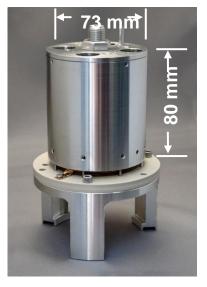
GDC electrode

•HT-7: 5x10-4Pa-0.5Pa, Bt=0.5-2

HF-GDC is routinely used in HT-7 for wall conditioning, siliconization and recycling control between shots which shows almost the same effects with RFWC.

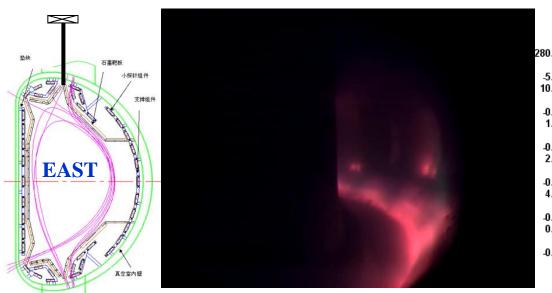

P=5.0E-2Pa, IGD=1.0A, Bt=1.0T, He

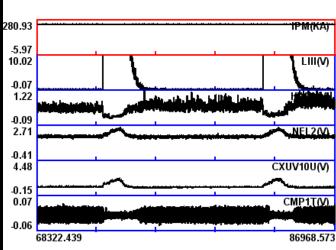
P=5.0E-2Pa, IGD=1.0A, Bt=1.0T, H2


P=5.0E-4Pa, IGD=1.0A, Bt=1.0T, He

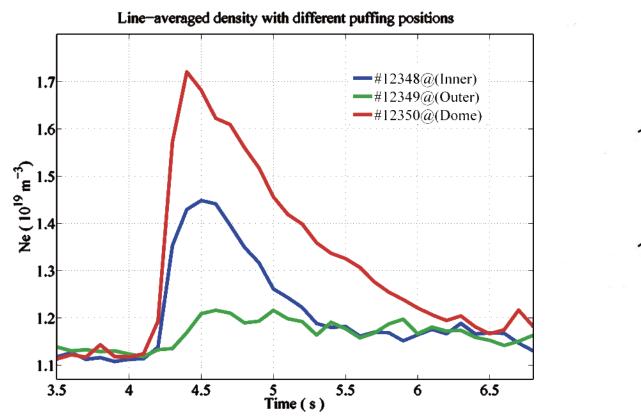
Recovery from 10Pa leakage

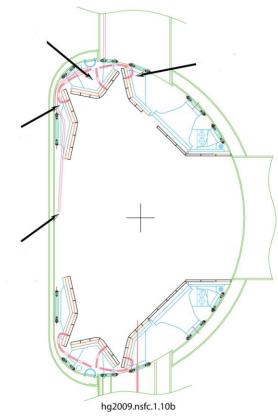
Li Wall Conditioning (PPPL)



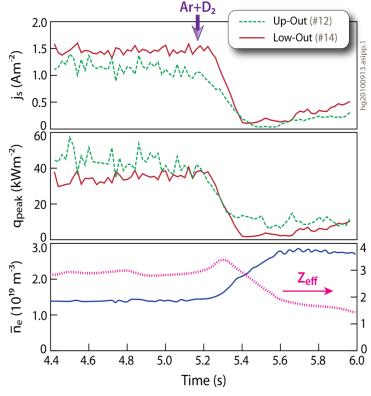


小探针在直空室内载面安装位置



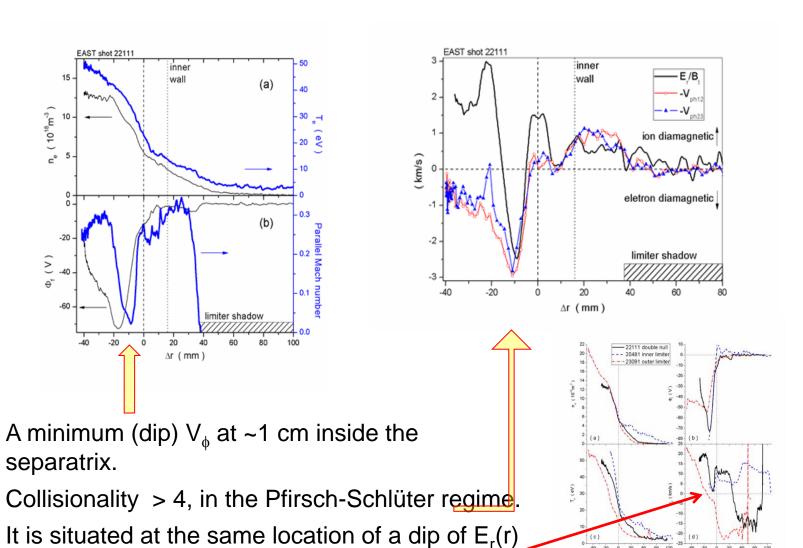

- Li Oven: RF coating (10-60g) Evaporating
- Li power dropper
- •Main Results:
- Very good and quick technique
- \cdot Z ~ 1.5-2.5
- More broad Te and radiation profile
- Low recycling

Fueling Effect of Gas Puff Locations



DOME D₂ puffing has highest fuelling efficiency, less from inner target plate, lowest from outer target plate. Compared to SN configuration, DN is more sensitive to gas puffing location.

Effect of Ar:D2 mixture gas injection into upper and lower outer divertors


EAST adopted ITER-like vertical target configuration, which promotes detachment near strike point. However, this scenario by density ramping is not fully compatible with LHCD and high confinement scenario, radiative divertor is required.

- D2+5.7% Ar mixture
 puffing was initiated at 5s
 led to detachment at both
 upper and lower outer
 divertor targets
- significantly reducing the peak heat fluxes, q_{peak}, near outer strike points
- Zeff is reduced

Ar puffing in divertors promote partial detachment and reduce peak heat flux

Toroidal flow at edge

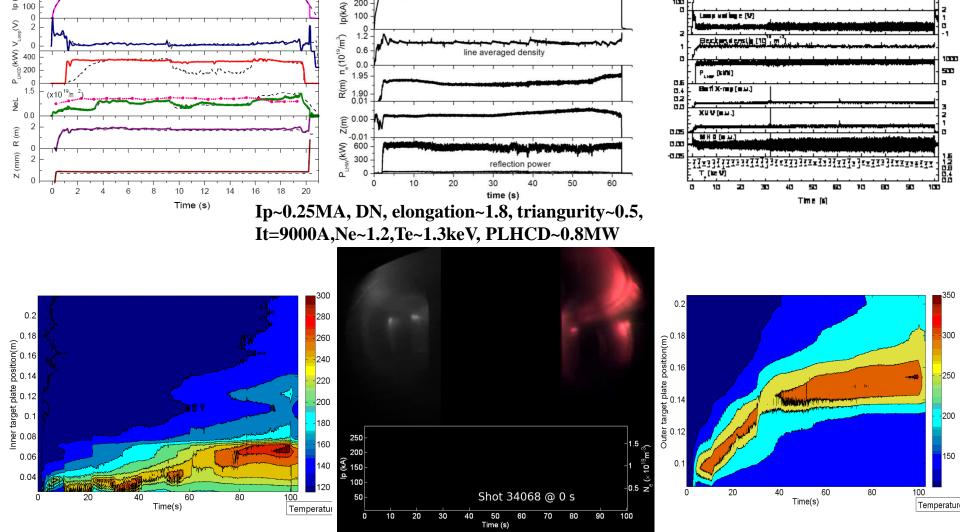
• But a dip of $V_{\phi}(r)$ not observed in the discharges that the plasma edge touches the outer limiter

Long Pulse Discharges (With GA)

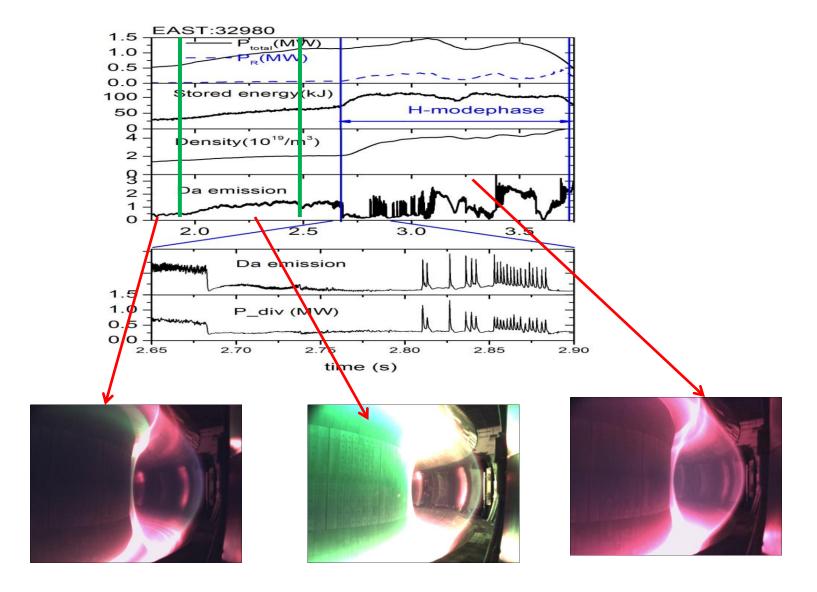
In 2009

EAST Shot# 13865

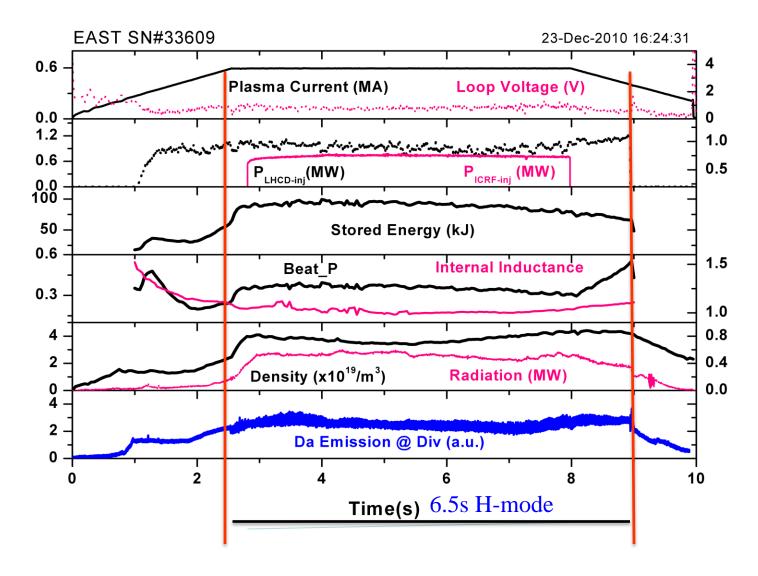
In 2010


Plasm a current (kA)

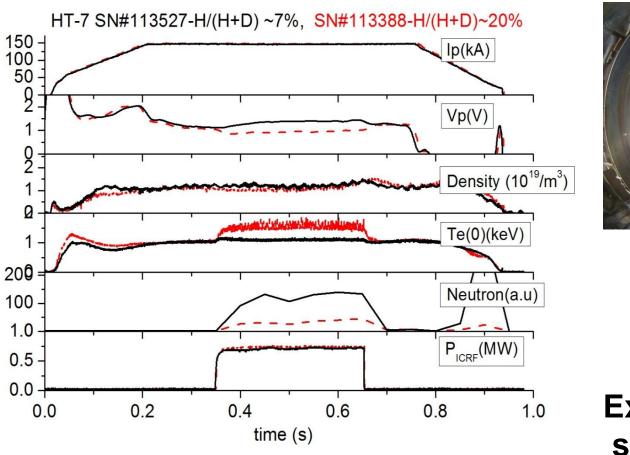
Lamp and lag c (V)


Stat iimber:31068

In 2008


Shot#8941 & Shot#8933

First H mode by Li coating EAST either by oven or by lithium powder injection



6.5s H-mode by RF+LH (MIT,PPPL)

H-mode during ramp-up, flat-top and ramp-down phases, very important for ITER

Lithized wall on HT-7

Experiments to support EAST

Recent HT-7 experiments demonstrated the feasibility of Lithized fullmetal wall for recycling/impurity control and effective ICRF heating

EAST 2012 capabilities

PF power supply upgrade SMBI, SS Pellet injector 1/2 C tiles change to Mo tiles PFC modification for 250°C and longer pulse with different puffing (place and gases)

- 4 MW LHCD @ 2.45GHz √
- 1.5MW ICRF @ 30-110MHz $\sqrt{}$
- 4.5MW ICRF @ 25-75MHz ~√

•Diagnostics (61) → all key profiles and some of specific measurements for physics understanding **0.6-1MA operation**

H-mode operation

For ITER

Safe start-up & termination
VDI
PWI
Fueling
Wall conditioning
ELM control

30s H-mode 200-400s DN

CN-MCF Near Term Plan (2020)

ITER construction

- ASIPP: Feeders (100%), Correction Coils (100%), TF Conductors (7%), PF Conductors (69%), Transfer Cask System(50%), HV Substation Materials (100%), AC-DC Converter (62%)
- SWIP: Blanket FW (10%) &Shield (40%), Gas Injection Valve Boxes+ GDC Conditioning System (88%), Magnetic Supports (100%),
- Diagnostics (3.3%)

Enhance Domestic MCF

Upgrade EAST, HL-2M

ITER technology

TBM(Two options)

T-Plant

University program

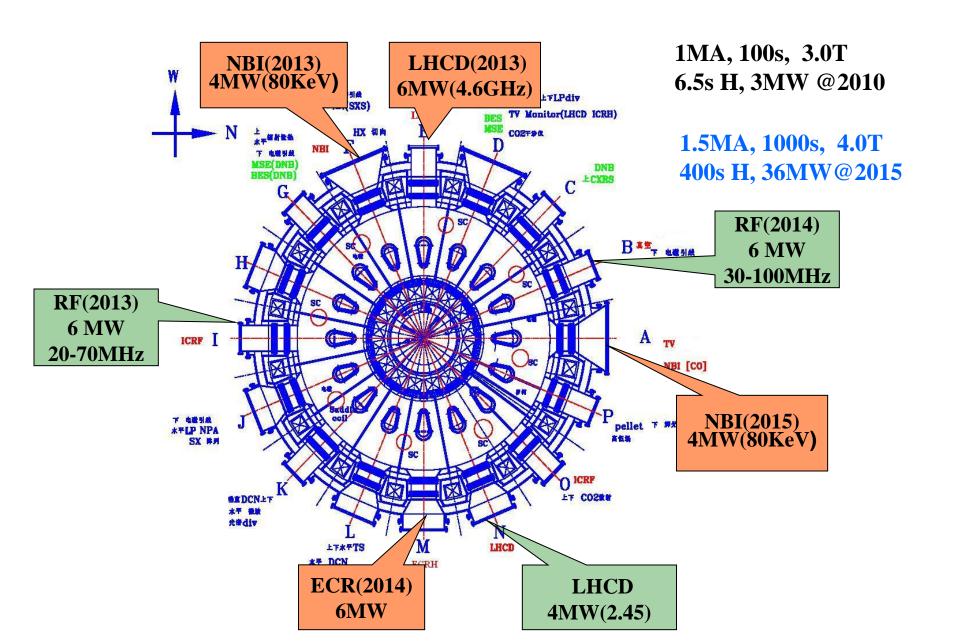
DEMO design (Wan)

DEMO Material

Education program(2000)

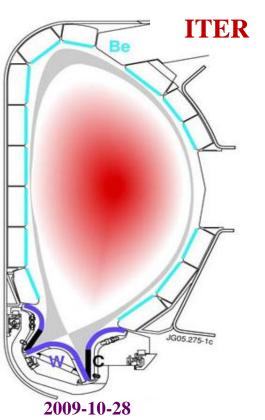
70-80% of ITER-CN budget

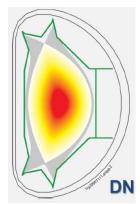
Can start construct CN pilot power plant before 2020

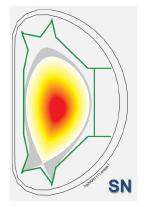


EAST 5 year Plan

	2011	2012	2013	2014	2015			
Ip(MA)	1.0	1.0	1.0	1.5	1.5			
LHCD(MW, CW)								
2.45GHz	4.0	4.0	6.0	6.0	6.0			
4.6GHz			6.0	6.0	6.0			
ICRF(MW,CW)								
20-75MHz	4.5	4.5	4.5	6	6			
30-100MHz	1.5	4.5	4.5	6	6			
NBI(80keV)			4.0	8.0	8.0			
ECRH (140G	1.0	2.0	4	4				
Diagnostics	40	45	50	60	60			
Duration(s)	100	200	300	400	1000			
t-Hmode(s)	10	20	30	100	400			


With over 20MW CW power and 50 diagnostics, EAST could play a key role for long pulse advanced high performance plasma for ITER within next 5 years


Efforts Made- EAST ATSSO



PFC Strategy for ATSSO

- <u>Initial phase</u> (2006-2007)

 PFM ⇒ SS plates bolted directly to the support without active cooling
- First phase (2008-2012)

 PFM ⇒ SiC-coated doped C tiles bolted to Cu heat sink ~2MW/m²
- Second phase (2013-2016)
 Full W, Actively-cooled ITER W/Cu divertor, 10MW/m².
- <u>Last phase</u> (2017---) High Tw operation (>400C) by hot He Gas 15MW/m²·

Edge Simulation under H-mode With LLNL, ENEA, TS, ITER-IO

Outline

HL-2A Tokamak

EAST Tokamak

- Physical engineering capability
- > Main experimental results
- > Research Plan in next 2-5 years

ITER-CN Activities

Future Plan of CN-MCF program

Summary

ITER-Conductor: Ready for deliver

Wire: NICNC,Oxford

Coating:Shenghai Ltd

Wire testing: ASIPP

Central tube: Tai Steel,

Cabling: Basheng Ltd,

316LN Tube:

Integration: ASIPP

Shielding Blanket-Ready for sign PA

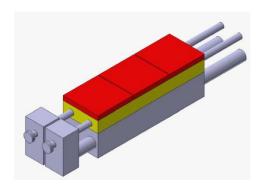
I. Current Scope of CN procurement

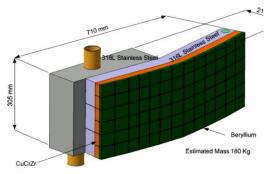
• Current: 10%FW and 40%SB.

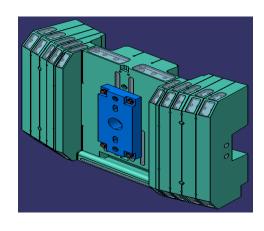
• New proposal: 12.6%FW and 50.2%SB.

II. First wall (FW) qualification

Two phases towards manufacturing.

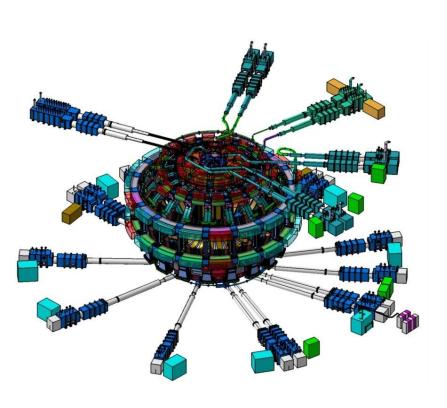

- (1) Qualification of Be/Cu/SS joining technology by fabricati & testing qualification mock-ups;
- (2) Semi-prototype qualification.

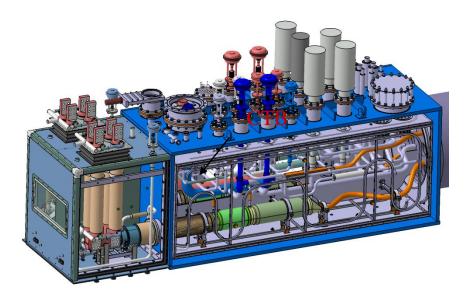

III. Shielding block (SB) analysis and technology

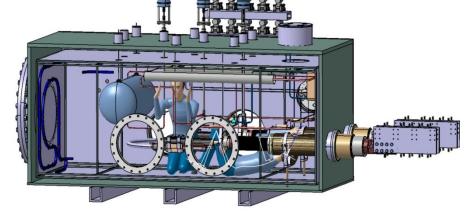

- Modeling, hydraulic, thermal stress, EM analysis;
- 316L(N), deep EB welding and hole drilling.

IV. Materials research and qualification

- Qualification of Chinese VHP-Be for ITER FW;
- Post-fabrication property of CuCrZr alloy.

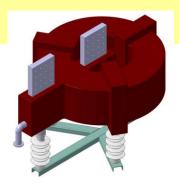





Feeder Team

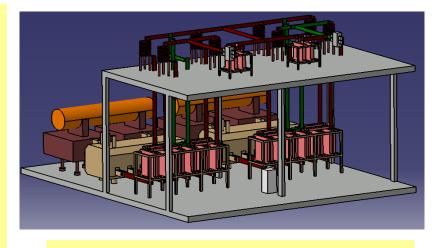
Feeders: Start Construction

ITER Power Supply: Start Construction

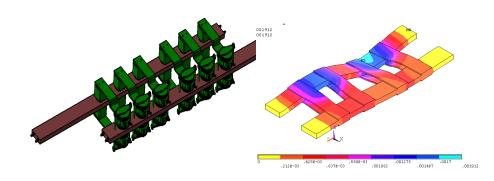

ITER power supply Package in CN

- ★ AC/DC converter (share with KO)

 Tested on EAST
- **★** Reactive power compensation
- **★** HV substation



Local control R&D



DC inductor R&D

AC/DC Converter structure R&D

Converter arm displacement in EM force

HL-2A Tokamak

EAST Tokamak

- Physical engineering capability
- > Main experimental results
- > Research Plan in next 2-5 years

ITER-CN Activities

Future Plan of CN-MCF program

Summary

Planning for Next Step

- > CN-Design team (18)
- Y.Wan, J.Li, Y.Liu, X.Wang
- Phy. Design, 13 sub-groups
- 2 options within 3 years (ECD1)
- \triangleright Eng. Design (4-6 Y)
- > Key R&D (3-10 Y)

Diagnostic

Blanket (TBM, FFHM)

Magnet

T-plant

RH

Education (10 years)

2016-2025 Construction

Rank No.1 in 2016- 5Y plan

Operation:

5-years, H2, He (D2)

6-8 Y DT-1 operation

6-8 Y DT-2 operation

ITER

2019: 1st Plasma

2027: DT-1, Q=10, 400s

2037: DT-2, Q=5, 3000s

Efforts Made-Education

Present state:

- ASIPP: HT-7/EAST (150 students), ITER (80 students)
- SWIP (60)
- School of Physics (USTC, 25)
- School of Nuclear Science (USTC-ASIPP, >50)
- CN-MOE-MCF center (10 top universities) 50

Total about 450 students, 150/y, 20-30% remain in fusion

Targets and efforts

- >2000 fusion talents in 2020
- >MOST, MOE, CAS, CNNC

have lunched a national fusion

training program for next 10

years.

Basic training in 10 top univ.

Join EAST/HL-2A experiments

Small facilities in Univ.

Foreign Labs& Univ.

Annual summer school, workshop

Efforts Made- R&D (MOST)

2010

Present state

• 5 year-MCF plan

• 10-year MCF plan

2009

PWI

Solid TBM concept design

DCLL TBM concept design

ITER design

ITER-ICRF

MCF-talent (8, exp.)

Hybrid concept design

TBM-T system design

DEMO-FW(W)

MCF-basic simulation

MCF-talent (9, ITPA)

2011

CN-MCF Reactor design

ITER-W-diverter

High B (Nb3Al,YBCO) magnet

T-plant design

RFP

MCF-talent (5, simulation)

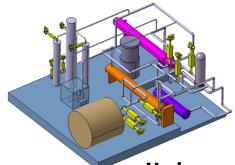
MCF-talent (11, material)

R&D Plans for CN HCSB TBMs

Fabrication Technology

- Mockup of U-shape first wall (2010)
- Mockup of sub-module (2012)
- Small-size (1:3) Mockup of HCSB TBM (2013)

Helium Cooling System

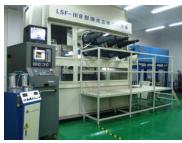

- Design of Test facility for FW
- Test facility of mockup (2013)
- Prototype HCS for ITER TBM (2016)

Breeder Materials

- Li₄SiO₄ pebble (in-pile 2014-2016)
- Be pebble in lab. level (2013)
- Be-irradiation test (2017)

Structure Materials

- Fabrication (2011) → Database for CLF-1under irradiation of 1 dpa (2015)
- RAFM join by laser solid forming and by diffusion bonding(2010);
- RAFM HIP join (ongoing);
- Tritium pemeation barrier (2015).


He loop

HFETR

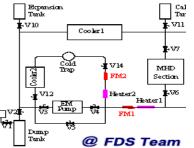
Ceramic Breeder

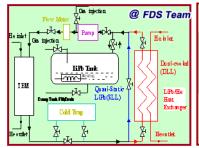
LSF-III

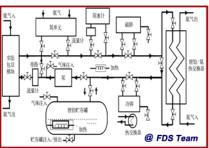
Be Pebble

500kg CLF Ingot

Development of DRAGON Series LiPb Loops


Loop name	Туре	Function	Temperature	Time
DRAGON-I	TC*	Material Compatibility	420-480°C	2001-2005
DRAGON-II	TC	Compatibility	550~700°C	2004-2006
DRAGON-III	TC	Compatibility	800~1000°C	2007-2009
DRAGON-S ^T	Static	Compatibility	250~1000°C	2008-2009
DRAGON-R ^T	Flowing	Compatibility	450~600°C	2009
DRAGON-IV	FC#	Material Compatibility, Thermal- hydraulics, MHD, Purification of LiPb, etc.	480~800°C	2007-2009
DRAGON-V	FC	Dual-coolant test for TBM, MHD test for the complex ducts	300~700°C	2010-2012
DRAGON-VI	FC	Auxiliary system for EAST-TBM	-	2012-2015
DRAGON-VII	FC	Auxiliary system for ITER-TBM	-	2015-2018
DRAGON-VIII	FC	Auxiliary system for DEMO blanket	-	-





Next-step device design: Option 1:

Choice 1: Smaller machine

R=5m; a=1.5m; k=1.75;

T=4.5K, BT=5T; Ip=8MA;

 $ne=1-4x10^{20}m^{-3}$;

Step 1:Beta N: 2.5

Pth: 150MW-300MW

Step 2: AT H-mode, Beta N: 3-4

Pth: 1-1.5GW

Q=2-5, t>8 hour, SSO

Material & Component testing,

T breading (TBR>1),

T fuel recycling, RH validation

RAMI validation

FFH blanket testing (SFB, TM)

Choice 2: ITER-like machine

R=6.5m; a=2.5m; k=1.75;

T=4.5K, BT=5T; Ip=8MA;

 $ne=1-4x10^{20}m^{-3}$;

Step 1:Beta N : 2.5

Pth: 300MW-500MW

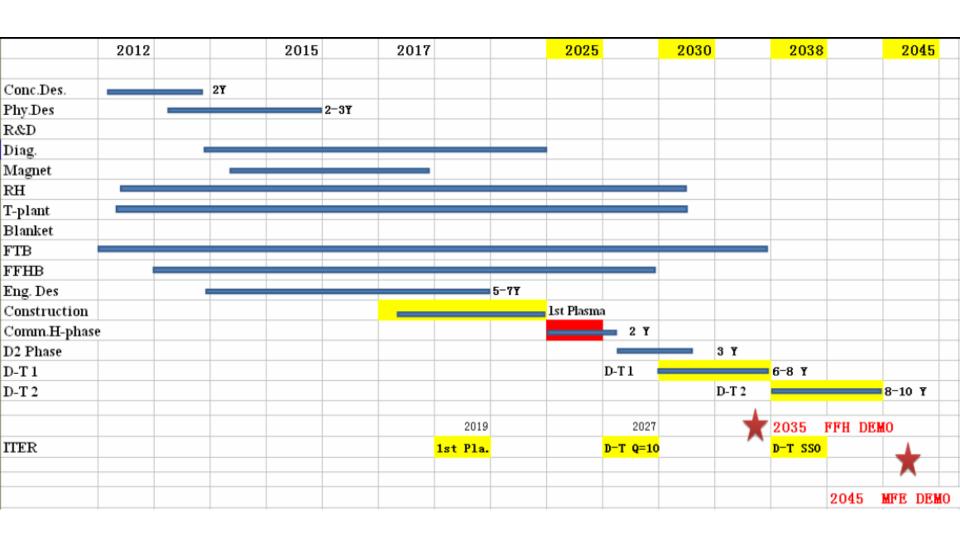
Step 2: AT H-mode, DEMO-like

Pth: 2-3GW

T>8 hour, SSO

Material & Component testing

T breading (TBR>1),


Pure fusion TBM configuration

RH validation, RAMI validation

Close fuel cycle

FFH blanket testing (SFB, TM)

Possible Plan and Schedule

International cooperation

- France, CEA, CADERACHE •
- UK, UKAEA, CULHAM
- EU, JET, EFDA
- Germany: IPP, Garching KFA, Julich
- Italy, Frascati: ENEA
- USA: UT/IFS, GA,
 PPPL, U Illinois
 PSFC/MIT, SNL
 ORNL, LLNL
 UCLA, UCSD
- ITER-IO, 6—DAs

- Japan: NIFS, JAEA, JSPS, Tokyo (20M\$/y) > 30 univ. in each side.
- India, IPR, Bhat
- Korea, KFRI, KBSI
- Russia:Kurchchatov institute St. Petersburg, AFIPT Troisk: Triniti

Swiss: DRCP

Holland: FOM

Cooperation with US

More than 20 years cooperation Mutual benefits Ken obtained 04 state reward

Cooperation with DIII-D

- Wide cooperation for experiments, theory, technology
- good internet connections
- Exchange of Hardware for 5-6M\$
- Exchange of personnel 20m/y
- From DIII-D&EAST to ITER

2009 State international cooperation reward

Cooperation with PPPL

- Experiments(>15 Scientists from PPPL)
- Technology (hardware exchange)
- Theory(joint research plan)
- Joint ITER activities
- Future: FSP (simulation EAST,ITERC,FETER)

Very Strong Support from Top Leaders

and Public (10,000 visitors to EAST)

Opportunities and mechanisms for collaboration

• Opportunities:

EAST: 400-1000s, full metal, 30MW, hot wall, 3rd shift by US Joint task forces, detail planning

ITER: sharing resources from both country, joint teams.

Next device: joint teams, 2nd Option, FSP, joint facilities

Education

2011DPP/APS, 64chinese/12from Mainland

Mechanisms

Standard operation found

1-2% of MCF budget from each side

5 years plan

Review, assessment, workshop

Based on present frame

Administration, physics, engineering

"US and China should joint more closely for fusion research which is beneficial for whole human being. I would like to see your successes."

Fusion budget

Fusion research deserve more budget

Contribution to ITER should based on sound demotic program

Joint US-CN ITER teams

- SC PA, 25-35% cheaper
- SS PS, 20% cheaper
- Blanket, 20% cheaper
- RF transmission 40%

Assign sub-contracts to CN

- $25\% \times 145M = 36M$ \$
- ASIPP PA: 2-3 M\$

Joint Contracts from IO: 3-4M\$

Total: 41-43M\$

Non- ITER activities

• CN MCF TFs: 3-4M\$

Design, experiments, R&D

US MCF TFs: 5-6 M\$

NSTX-Upgrade

DIII-D Upgrade

hardware exchange, sub-contracts

Education

FSP

Total: 8-10M\$

40-50M\$ saving per year might be possible, need careful and long term planning

Summary

- EAST Starts important experiments with helps from international cooperators, especially from US. EAST is fully open and EAST is also yours.
- By joining ITER project, China will work more closely with other 6 parties for a successful operation of ITER.
- China would do its best to try catching up . Your helps and suggestion are valuable.
- More close cooperation between US and CN will beneficial to us. I am sure we will have more productive outcome in future.

Thanks

Welcome to visit ASIPP

