# **Status of FIRE**

### **A Potential Next Step Option**

Dale M. Meade National FIRE Design Study Team

Next Step Options Program Advisory Committee Meeting General Atomics, San Diego, CA.

July 20, 2000

http://fire.pppl.gov



### **Outline of FIRE Topics**

Introduction

Objectives

**Configuration and Parameters** 

**Disruption Requirements** 

Diagnostics

**Performance Projections** 

Pulse Evolution and Burn Control

Fast Alpha Effects

Long Pulse Capability (coil limits)

Advanced Tokamak (also Jardin) Electrical Power Requirements

Cost Range

Timetable for Burning Plasmas

**Critical Issues** 

Conclusions

### **Contributors to the FIRE Design Study**

FIRE is a design study for a major Next Step Option in magnetic fusion and is carried out through the Virtual Laboratory for Technology. FIRE has benefited from the prior design and R&D activities on BPX, TPX and ITER.

Advanced Energy Systems **Argonne National Laboratory Bechtel Technology and Consulting General Atomics Technology** Georgia Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory Massachusetts Institute of Technology **Oak Ridge National Laboratory Princeton Plasma Physics Laboratory** Sandia National Laboratory Stone and Webster The Boeing Company **University of Illinois** University of Wisconsin

### Basic Approach for an Advanced Tokamak Next Step (FIRE)



### Fusion Science Objectives for a Major Next Step Experiment (e.g., FIRE)

- Explore and understand the physics of alpha-dominated fusion plasmas:
  - Energy and particle transport (extend confinement predictability)
  - Macroscopic stability ( -limit, wall stabilization, NTMs)
  - Wave-particle interactions (fast alpha driven effects)
  - Plasma boundary (density limit, power and particle flow)
  - Strong coupling of previous issues due to self-heating(self-organization?)
- Test techniques to control and optimize alpha-dominated plasmas.
- Sustain alpha-dominated plasmas high-power-density exhaust of plasma particles and energy, alpha ash exhaust, study effects of profile evolution due to alpha heating on macro stability, transport barriers and energetic particle modes.
- Explore and understand some advanced operating modes and configurations that have the potential to lead to attractive fusion applications.

# Fusion Ignition Research Experiment (FIRE)



**Design Goals** 

- R = 2.0 m, a = 0.525 m
- B = 10 T, (12T)\*
- $W_{mag}$  = 3.8 GJ, (5.5 GJ)\*
- $I_p = 6.5 \text{ MA}, (7.7 \text{ MA})^*$
- $P_{alpha} > P_{aux}$ ,  $P_{fusion} \sim 220 \text{ MW}$
- Q ~ 10,  $\tau_{\rm E}$  ~ 0.55s
- Burn Time ~ 20s (12s)\*
- Tokamak Cost ≤ \$0.3B Base Project Cost ≤ \$1B

\* Higher Field Option

Attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive MFE systems.

### A Robust and Flexible Design for FIRE has been Achieved

- Toroidal and poloidal coil structures are independent allowing operational flexibility
  - The toroidal field coils are wedged with static compression rings to increase capability to withstand overturning moments and to ease manufacturing.
- 16 coil TF system with large bore provides
  - Large access ports (1.3m high by 0.7m wide) for maintenance and diagnostics.
  - Low TF ripple (0.3% at plasma edge) provides flexibility for lower current AT modes without large alpha losses due to ripple.
- Double-null divertor configuration for H-mode and AT modes with helium pumping that is maintainable/replaceable/upgradeable remotely
- Double wall vacuum vessel with integral shielding (ITER-like) to reduce neutron dose to TF and PF coils, and machine structure.
- Cooling to LN2 allows full field (10T) flattop for 20s or 4T (TPX-like) flattop for 250s.

The FIRE Engineering Report and 16 FIRE papers presented at the IEEE Symposium on Fusion Engineering are available on the web at <a href="http://fire.pppl.gov">http://fire.pppl.gov</a>

### **Basic Parameters and Features of FIRE Reference Baseline**

| R, major radius                                | 2.0 m                                                     |
|------------------------------------------------|-----------------------------------------------------------|
| a, minor radius                                | 0.525 m                                                   |
| $\kappa$ 95, elongation at 95% flux surface    | ~1.8                                                      |
| $\delta$ 95, triangularity at 95% flux surface | ~0.4                                                      |
| q95, safety factor at 95% flux surface         | >3                                                        |
| Bt, toroidal magnetic field                    | 10 T with 16 coils, $< 0.5\%$ ripple @ Outer MP           |
| Toroidal magnet energy                         | 3.7 GJ                                                    |
| Ip, plasma current                             | ~6.5 MA (7.7 MA at 12 T)                                  |
| Magnetic field flat top, burn time             | 21 s at 10 T, Pfusion ~ 200 MW)                           |
| Pulse repetition time                          | 2 hr @ full field                                         |
| ICRF heating power, maximum                    | 30 MW, 100MHz for $2\Omega T$ , 4 mid-plane ports         |
| Neutral beam heating                           | None, may have diagnostic neutral beam                    |
| Lower Hybrid Current Drive                     | None in baseline, upgrade for AT phase                    |
| Plasma fueling                                 | Pellet injection ( $\geq 2.5$ km/s vertical launch inside |
|                                                | mag axis, possible guided slower speed pellets)           |
| First wall materials                           | Be tiles, no carbon                                       |
| First wall cooling                             | Inertial between pulses                                   |
| Divertor configuration                         | Double null, fixed X point, detached mode                 |
| Divertor plate                                 | W rods on Cu backing plate (ITER R&D)                     |
| Divertor plate cooling                         | Inner plate-inertial, outer plate active - water          |
| Fusion Power/ Fusion Power Density             | ~200 MW, ~10 MW m-3 in plasma                             |
| Neutron wall loading                           | ~ 3 MW m-2                                                |
| Lifetime Fusion Production                     | 5 TJ (BPX had 6.5 TJ)                                     |
| Total pulses at full field/power               | 3,000 (same as BPX), 30,000 at 2/3 Bt and Ip              |
| Tritium site inventory                         | Goal < 30 g, Category 3, Low Hazard Nuclear Facility      |

#### Upgrade to B = 12T and Ip = 7.7MA with a 12 second flat top has been identified.

### **FIRE Incorporates Advanced Tokamak Innovations**

#### Wedged TF Coils (16), 15 plates/coil\* Innèr Leg BeCu C17510, remainder OFHC C10200 **AT Features** Compression Ring DN divertor Double Wall Vacuum Vessel (316 S/S) strong shaping All PF and CS Coils\* very low ripple **OFHC C10200** internal coils Internal Shielding 60% steel & 40% water) space for wall Vertical Feedback Coil stabilizers inside pellet Passive Stabilizer Plates injection space for wall mode stabilizers • large access ports W-pin Outer Divertor Plate Cu backing plate, actively cooled

#### **Direct and Guided Inside Pellet Injection**

\*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

| <b>FIRE Disru</b> | otion and D | isruption-Relate | ed Design Ba                            | asis Recommen | dations |
|-------------------|-------------|------------------|-----------------------------------------|---------------|---------|
|                   |             |                  | · · · - · · · · · · · · · · · · · · · · |               |         |

| Parameter                           | Value (Range)           | Comment                                                               |
|-------------------------------------|-------------------------|-----------------------------------------------------------------------|
| Frequency                           | 10% (10-30%) per pulse  | 30% for plasma development                                            |
|                                     |                         | $\leq$ 10% for mature (repetitive) operation                          |
| Number (3,000 full                  | 300 (900)               | 300 at full $W_{th}$ and $W_{mag}$ , balance at $\leq 0.5 W_{th}$ and |
| performance attempts)               |                         | full W <sub>mag</sub>                                                 |
| Thermal energy                      | 33 MJ                   | For typical 200 MW plasma                                             |
| Thermal quench                      | 0.2 (0.1–0.5) ms        | Single or multi-step thermal quench                                   |
| duration                            |                         |                                                                       |
| Fraction of W <sub>th</sub> to      | 80-100%                 | By conduction to targets, up to 2:1 toroidal                          |
| divertor                            |                         | asymmetry                                                             |
| Fraction of W <sub>th</sub> to FW   | $\leq 30\%$             | By radiation (to FW) or conduction (to baffle)                        |
| (baffle)                            |                         |                                                                       |
| In-divertor partition               | 2:1 - 1:2               | For SN plasmas. Significant uncertainty. No data for                  |
| (inside/outside)                    |                         | DN plasmas                                                            |
| Poloidal localization in            | 3-x normal SOL; (1-x to | Incident energy, with up to 2:1 toroidal asymmetry.                   |
| divertor                            | 10-x)                   | Plasma shielding and re-radiation will likely                         |
|                                     |                         | redistribute in-divertor energy                                       |
| Magnetic energy                     | 35 (?) MJ               | For 6.5 MA, total out to VV                                           |
| Current quench                      | 6 (2-600) ms            | Duration $\geq$ 30 ms: more-severe VDE and halo                       |
| duration                            |                         | current                                                               |
| Maximum current                     | 3 MA/ms                 | May occur only during fastest part of current quench;                 |
| decay rate                          |                         | typical maximum rate ~1 MA/ms                                         |
| Fraction of W <sub>mag</sub> to     | 80-100%                 | By radiation, with poloidal peaking factor $\sim 2$                   |
| FW, by radiation                    |                         |                                                                       |
| Fraction of W <sub>mag</sub> to FW, | 0-20%                   | From VDE: depends on VDE evolution and in-                            |
| by localized conduction             |                         | vessel halo current. Hot-plasma VDEs may also                         |
|                                     |                         | deposit ~0.2-1.0 $W_{th}$ on localized portion(s) of FW.              |
|                                     |                         | Toroidal alignment critical                                           |

**Table Continues** 

| Parameter                                  | Value (Range)                  | Comment                                                       |
|--------------------------------------------|--------------------------------|---------------------------------------------------------------|
| VDE frequency                              | TBD (??? 1% of pulses,         | Very uncertain. May be able to maintain vertical              |
|                                            | or 10% of                      | position control after thermal quench. But                    |
|                                            | disruptions???)                | margin/noise sensitivity uncertain. Control failure           |
|                                            |                                | yields VDE or loss of after-thermal-quench control            |
| Halo current fraction                      | 0.4 (0.01-0.50)                | Highest value may apply (depends on passive                   |
| I <sub>h,max</sub> /I <sub>p0</sub>        |                                | stabilizer configuration)                                     |
| Toroidal peaking factor                    | $2 (1.2 \le \text{TPF} \le 4)$ | TPF up to 2 yields 'sin $\phi$ ' distribution; TPF > 2 yields |
|                                            |                                | 'localized filament'                                          |
| (I <sub>h,max</sub> /I <sub>p0</sub> )*TPF | ≤ 0.50 (typical                | Data bound is $\leq 0.75$ (see text)                          |
|                                            | maximum)                       |                                                               |
| Runaway electron                           | 50% I <sub>p</sub> (0-50%)     | Highly uncertain. $I_{RA} > 1$ MA requires $\ge 1$ A seed     |
| current (following                         | •                              | source. Not expected in thermal plasma, but pellet            |
| disruption or fast                         |                                | shutdown may seed avalanche. MHD fluctuations                 |
| shutdown)                                  |                                | may offset part or all of avalanche growth.                   |
| Runaway energy                             | ~15 MeV                        | Limited by knock-on avalanche                                 |
| Localization of runaway                    | $\leq 1 \text{ m}^2$           | Poloidal localization to a ~0.1-m (poloidal) section of       |
| deposition                                 |                                | the FW or divertor target expected; toroidal                  |
|                                            |                                | localization depends on pfc and wall alignment to             |
|                                            |                                | toroidal field                                                |

#### FIRE Disruption and Disruption-Related Design Basis Recommendations (cont'd)

- Basis: ITER EDA /EG and ITER Physics Basis, Chapter 3
  - Lacks for FIRE: thermal quench data, DN data

- Disruption, halo current and runaway electron avalanche (RAe) characteristics have been specified (based on ITER Physics Basis; VV and in-VV response TBD
- Thermal quench data (SN) quality is poor; DN data is lacking (R&D for C-Mod and DIII-D)
- Divertor plasma shielding and radiative energy redistribution is critical issue
- Halo current magnitude and VV force estimated: need TSC and toroidal asymmetry model (3-D plasma) for details; passive stabilizer role and asymmetry needs further physics R&D (ASDEX-U)
- Possibility of after thermal quench VDE stabilization TBD
- Outcome of RAe uncertain (seed and MHD levels); potential for serious invessel damage

Much work to be done in this area.

### **FIRE would have Access for Diagnostics and Heating**



# **Provisional List of Diagnostics (1)**

- Magnetic Measurements
  - Rogowski Coils, Flux/voltage loops, Discrete Br, Bz coils, Saddle coils, Diamagnetic loops, Halo current sensors, Hall effect sensors
- Current Density Profiles
  - Motional Stark effect with DNB, Infrared polarimetry
- Electron Density and Temperature
  - Thomson Scattering, ECE Heterodyne Radiometer, FIR interferometer, Multichannel Interferometer, ECE Michelson interferometer, ECE Grating Polychromator, Millimeter-wave Reflectometer
- Ion Temperature
  - Charge Exchange Spectroscopy with DNB, X-Ray Crystal Spectrometer, Charge Exchange Neutral Analyzer (edge)
- Visible and Total Radiation
  - Visible Survey Spectrometer, Visible Filterscopes, Visible Bremsstrahlung Array, Bolometer Arrays, Plasma TV and Infrared TV
- Ultra Violet and X-Ray Radiation
  - UV Survey Spectrometer, Hard X-ray detectors, Soft x-ray Spectrometer, X-ray pulse height analysis



K. M. Young 5/2/00

# **Provisional List of Diagnostics (2)**

- MHD and Fluctuations
  - Mirnov Coils, Locked-mode coils, Soft x-ray array, Beam emission spectroscopy, Millimeter wave reflectometer, Collective scattering
- Particle Measurements and Diagnostic Neutral Beam
  - Epithermal Neutron detectors, Multichannel Neutron Collimator, Neutron Fluctuation detectors, Diagnostic Neutral Beam
- Charged Fusion Products
  - Escaping Alpha Particle detectors, IR TV (shared with total radiation), Collective Scattering (CO2?), α-CXRS, Knock-on neutron detectors
- Divertor Diagnostics
  - Divertor IR TV, Visible Hα TV, UV Spectrometer, Divertor Bolometer Arrays, Multichord visible spectrometer, Divertor Hα monitors, ASDEX-type Neutral Pressure Gauges, Divertor Thomson Scattering, Penning Spectroscopy, Divertor reflectometer
- Plasma Edge and Vacuum Diagnostics
  - Thermocouples, Fixed Edge Probes, Fast Movable Edge Probes, Torus Ion Gauges, Residual Gas Analyzers, Glow Discharge Probes, Vacuum Vessel Illumination



K. M. Young 5/2/00

# **R&D Concerns**

- What are impacts of high-field, highly shaped, high-n<sub>e,</sub> high radiation, RF-only on diagnostics selection and development?
  - Reliability of magnetic diagnostics?
  - Lifetime of plasma-facing mirrors, other optical elements?
  - ECE overlap?
  - Interferometry refraction/wavelength?
  - Functionality of x-ray systems?
  - CXRS and MSE techniques; capability for diagnostic neutral beam(s)?
  - Inside-launch reflectometry?
  - Confined alpha-particles?



# **FIRE: Diagnostics Schedule**



FIRE DIAGNOSTICS SCHEDULE: REVISION 0 1 SEPTEMBER 1999



K. M. Young 5/2/00

### Recent Innovations have Markedly Improved the Technical Basis for a Compact High Field Tokamak Burning Plasma Exp't.

Tokamak experiments (1989-1999) have developed enhanced confinement modes that scale (e.g.,ITER-98H) 1.3 times higher than the 1989 CIT design assumption.

Alcator C-Mod - the prototype for Compact High Field tokamaks has shown:

- Confinement in excess of 1.4 times the 1989 design guidelines for CIT and ~1.15 times the recent ITER-98H design guidelines.
- Successful ICRF heating at high density in shaped diverted plasmas.
- Successful detached divertor operation at high power density.

VDEs and halo currents have made internal hardware design more difficult.

D-T experiments on TFTR and JET have shown:

- Tritium can be handled safely in a laboratory fusion experiment!!!
- D-T plasmas behaved roughly as predicted with slight improvements in confinement in plasmas with weak alpha-heating.

Engineering Innovations to increase capability and reduce cost

• Improved coil and plasma facing component materials, improved 3-D engineering computer models and design analysis, advanced manufacturing.

### **Guidelines for Estimating Plasma Performance**

Confinement (Elmy H-mode) - Based on today's tokamak data base

$$\tau_{\rm E} = 0.094 \ {\rm I}^{0.97} \ {\rm R}^{1.7} \ {\rm a}^{0.23} \ {\rm n}_{20}^{0.41} \ {\rm B}^{0.08} {\rm A}_{\rm i}^{0.2} \ {\rm \kappa}^{0.67} \ {\rm P}_{\rm heat}^{-0.63}$$

Density Limit - Base on today's tokamak data base

 $n_{20} \le 0.75 n_{GW} = 0.75 l_p / \pi a^2$ , H98  $\approx$  1 up to 0.75  $n_{GW}$  (JET, 1998)

Beta Limit - theory and tokamak data base

 $\beta \leq \beta_{N}(I_{p}/aB), \beta_{N} \sim 2.5$  conventional,  $\beta_{N} \sim 4$  advanced

H-Mode Power Threshold - Based on today's tokamak data base

Pth  $\geq$  (0.9/Ai) n<sup>0.75</sup> B R<sup>2</sup>, nominal L to H, with H to L being ~ half when well below the density limit.

Helium Ash Confinement  $\tau_{He} = 5 \tau_{E}$ , impurities = 3% Be

Understanding is mainly empirical. Better understanding is needed from existing experiments with improved simulations, and a benchmark in alpha-dominated fusion plasmas is needed for the design of an Fusion Energy Demonstration project.

| R, plasma major radius, m                                 | 2.0   |
|-----------------------------------------------------------|-------|
| A, plasma minor radius, m                                 | 0.525 |
| R/a, aspect ratio                                         | 3.8   |
| $\kappa$ 95, plasma elongation at 95% flux                | 1.77  |
| $\delta$ 95, plasma triangularity at 95% flux             | 0.4   |
| q_95                                                      | 3.02  |
| <b>B</b> _t, toroidal magnetic field, T                   | 10    |
| I_p, plasma current, MA                                   | 6.44  |
| 1_i(3), internal plasma inductance                        | 0.8   |
| Fraction of bootstrap current                             | 0.25  |
| Ion Mass, 50/50 D/T                                       | 2.5   |
| <ne>, 10^20 /m^3, volume average</ne>                     | 4.5   |
| $\alpha_n$ , density profile peaking = 1 + $\alpha_n$     | 0.5   |
| <n>l/Greenwald Density Limit, ≤ 0.75</n>                  | 0.70  |
| <t>n, density averaged temperature, keV</t>               | 8.2   |
| T(0), central temperature, keV                            | 13.1  |
| $\alpha_T$ , temperature profile peaking = 1 + $\alpha_T$ | 1     |
| Impurities, Be:high Z, %                                  | 3:0   |
| Alpha ash accumulation, $n_\alpha/n_e$ , %                | 2.6   |
| Zeff                                                      | 1.41  |
| $v^*$ , collisionality at $q = 1.5$                       | 0.043 |
| P_ext, MW                                                 | 22    |
| P_fusion, MW                                              | 223   |
| P_heat, MW                                                | 56.5  |
| tau_p*(He)/tau_E                                          | 5.00  |
| tau_E, energy confinement time s                          | 0.57  |
| ITER98H-multiplier, ≤1                                    | 1.04  |
| ITER89P - Multiplier                                      | 2.41  |
| $n_d(0)T(0)\tau_E$ , 10^20 m^-3keVs                       | 41.69 |
| Q_DT                                                      | 10.16 |
| IA, MA                                                    | 24.5  |
| Plasma current redistribution time, s                     | 13.9  |
| Pheat/P(L->H), $\geq 1$                                   | 1.149 |
| W_p, plasma thermal energy, MJ                            | 32.18 |
| $\beta_{total}$ , thermal plasma + alphas, %              | 3.11  |
| $\beta_N, \leq 2.5$                                       | 2.54  |
| Core Plasma Pressure, atmospheres                         | ~ 20  |

#### **Nominal FIRE Plasma Parameters from 0-D Simulations**

\* ARIES-AT, Q = 45 at HH = 1.3

## FIRE could Access High Gain in Elmy H-Mode



The baseline FIRE (6.44 MA) can access the alpha-dominated regime (Q > 5) for HH = 1. The Energy Mission is vulnerable to uncertainties in confinement.

### **FIRE could Access Alpha-Dominated Plasmas in H-Mode**



The Science Mission is robust to uncertainties in confinement.

# 1 1/2 -D Simulation\* of Burn Control in FIRE



codes. Click here http://w3.pppl.gov/topdac/

### Helium Ash Accumulation could be Explored on FIRE

![](_page_23_Figure_1.jpeg)

### **Single Particle Alpha Loss in AT Regimes**

### Summary of recent work (White)

- » Analysis of alpha loss using guiding center (ORBIT) code with collisions
- » FIRE with q(0) $\approx$ 3 has 6% prompt loss, 12 % loss at 50 ms( $\approx \tau_s$ )
- » Loss concentrated at midplane

### Action Items

- » Calculate power density of prompt loss alphas on first wall using ORBIT and/or LORENTZ code
- » Need to benchmark loss predictions to experiment
  - Ripple experiments on JET ( $\delta$ 16 ->  $\delta$ 32), JFT-2M

- Non-perturbative Instabilities in FIRE for positive and reverse magnetic shear (Gorelenkov)
  - » Non-perturbative Alfvén eigenmodes relevant to FIRE
  - » High-N STability analysis applied to q(0)<1 and q(0)>1 reference plasmas
  - » q(0)<1 plasmas are unstable to low-n RTAEs
    - internal redistribution possible
  - » q(0)>1 plasmas are always unstable to low-n RTAEs
    - modes strongest near q-min (as seen on TFTR)
    - internal redistribution possible

### Key issue is whether modes will be strong enough to significantly enhance loss

theory and experimental activites planned, see Physics Workshop Summary

### **Non-linear TAE Physics and Resonance Overlap**

- For high-n modes, need to assess role of resonance overlap in burning plasma
- \* Action Items
  - » Determine if TFTR experiments are a good example of resonance overlap
    - ORBIT analysis needed with multiple modes (White)
    - compare to Fokker-Planck-MHD simulations (Todo)
    - extrapolate to burning plasma

### FIRE could Access High-Gain Advanced Tokamak Regimes for Long Durations

- The coupling of advanced tokamak modes with strongly burning plasmas is a generic issue for all advanced "toroidal" systems. The VLT PAC, Snowmass Burning Plasma and Energy Subgroup B recommended that a burning plasma experiment should have AT capability.
- FIRE, with strong plasma shaping, flexible double null poloidal divertor, low TF ripple, dual inside launch pellet injectors, and space reserved for the addition of current drive (LHCD) and/or a smart conducting wall, has the capabilities needed to investigate advanced tokamak regimes in a high gain burning plasma.
- The LN inertially cooled TF coil has a pulse length capability ~250 s at 4T for DD plasmas. This long pulse AT capability rivals that of any existing divertor tokamak or any under construction. The coils are not the limit.
- Recent AT regimes on DIII-D (Shot 98977) sustained for ~ 16  $\tau_{\rm E}$  serve as demonstration discharges for initial AT experiments on FIRE. Need to develop self-consistent scenarios with profile control on FIRE with durations ~ 3  $\tau_{\rm skin}$ .

### FIRE could Access "Long Pulse" Advanced Tokamak Mode Studies at Reduced Toroidal Field.

![](_page_28_Figure_1.jpeg)

Note: FIRE is  $\approx$  the same physical size as TPX and KSTAR. At Q = 10 parameters, typical skin time in FIRE is 13 s and is 200 s in ITER-FEAT.

The combination of JET-U, JT-60 Mod, KSTAR and FIRE could cover the range fromsteady-state non-burning advanced-tokamak modes to "quasi-equilibrium" burning plasmas in advanced tokamak modes.

### FIRE can Access MHD Regimes of Interest from Today's Data Base to those Envisioned for ARIES-RS

![](_page_29_Figure_1.jpeg)

εβρ

### FIRE can Test Advanced Regimes of Relevance to ARIES-AT

![](_page_30_Figure_1.jpeg)

The transport calculations assumed 150 MW of fusion power and  $n(0)/\langle n \rangle = 1.5$ .

### Long-Pulse Advanced Tokamak Performance Achieved in DIII-D Leads to Interesting High-Gain Advanced Burning Plasma Experiments

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_2.jpeg)

DIII-D shot 98977 is close to a Demonstration Discharge for FIRE-AT 1 FIRE-AT 1 requires q95 = 4.5, n/ngw = 0.65,  $\beta_N$  H89 = 7.1, and produces fbs = 50% and Q = 10 (Pfusion =150 MW, Pin = 15 MW). This mode would be useful for quasi-steady experiments ~ 2 skin times.

264–99

#### **Potential Next Step Burning Plasma Experiments and Demonstrations in MFE**

![](_page_32_Figure_1.jpeg)

\* assumes non-inductive current drive

### FIRE Power Requirements for BeCu or CuTF Coils

|      | 10T (20s flattop) |                  | 12T (12s flattop)  |                  |
|------|-------------------|------------------|--------------------|------------------|
| BeCu | Peak Power (MW)   | Peak Energy (GJ) | Peak Power (MW)    | Peak Energy (GJ) |
| TF   | 490               | 11.5             | 815                | 11.5             |
| PF   | 250               | 2.2              | 360                | 3.7              |
| RF   | 60                | 1                | 60                 | 0.6              |
| Σ    | 800               | 14.7             | 1235               | 15.8             |
| Grid | 550 (TF&RF)       | 12.5             | 600 (TFbase)       | 10.9             |
| MG   | 250 (PF)          | 2.2              | 635 (TFsupp&PF&RF) | 4.9              |

|      | 10T (4            | 5s flattop)      | 12T (25s flattop) |                  |
|------|-------------------|------------------|-------------------|------------------|
| Cu   | Peak Power (MW)   | Peak Energy (GJ) | Peak Power (MW)   | Peak Energy (GJ) |
| TF   | 267               | 12.6             | 345               | 13.2             |
| PF   | 250               | 5                | 360               | 4.6              |
| RF   | 60                | 2.3              | 60                | 1.3              |
| Σ    | 577               | 19.9             | 765               | 19.1             |
| Grid | 577 (All Systems) | 19.9             | 404 (TF&RF)       | 14.5             |
| MG   | 0                 | 0                | 360 (PF)          | 4.6              |

### Preliminary FIRE Cost Estimate (FY99 US\$M)

|                                                                           | Estimated<br>Cost | Contingency | Total with<br>Contingency |
|---------------------------------------------------------------------------|-------------------|-------------|---------------------------|
| 1.0 Tokamak Core                                                          | 210.2             | 66.0        | 276.2                     |
| 1.1 Plasma Facing Components                                              | 44.8              | 13.5        |                           |
| 1.2 Vacuum Vessel/In-Vessel Structures                                    | 34.6              | 10.9        |                           |
| 1.3 IF Magnets /Structure                                                 | 103.7             | 34.8        |                           |
| 1.4 PF Magnets/Structure                                                  | 13.0              | 2.0         |                           |
| 1.5 Ciyosiai<br>1.6 Support Structure                                     | 1.0               | 0.5         |                           |
|                                                                           | 12.0              | 0.1         |                           |
| 2.0 Auxiliary Systems                                                     | 147.5             | 46.1        | 193.6                     |
| 2.1 Gas and Pellet Injection                                              | /.1<br>12.0       | 1.4         |                           |
| 2.2 Vacuum Fumping System<br>2.3 Fuel Recovery/Processing(Rough Estimate) | 13.0              | 2.0         |                           |
| 2.4 ICRF Heating                                                          | 107.4             | 32.7        |                           |
| 3.0 Diagnostics (Startup)                                                 | 18.4              | 12.2        | 30.6                      |
| 10 Power Systems                                                          | 1/0/              | 37 /        | 186.8                     |
|                                                                           | 143.4             | 57.4        | 100.0                     |
| 5.0 Instrumentation and Controls                                          | 18.9              | 2.5         | 21.4                      |
| 6.0 Site and Facilities                                                   | 172.2             | 40.8        | 213.0                     |
| 7.0 Machine Assembly and Remote Maintenance                               | 70.7              | 18.0        | 88.7                      |
| 8.0 Project Support and Oversight                                         | 107.6             | 16.2        | 123.8                     |
| 9.0 Preparation for Operations/Spares                                     | 16.2              | 2.4         | 18.6                      |
| Preconceptual Cost Estimate (FY99 US\$M)                                  | 911.1             | 241.6       | 1152.7                    |

Assumes a Green Field Site with **No** site credits or equipment reuse.

This estimate is work in progress and will be finalized in August 2000.

### June 1, 2000

## **Timetable for Burning Plasma Experiments**

![](_page_35_Figure_1.jpeg)

- Even with ITER, the magnetic fusion program will be unable to address the alpha-dominated burning plasma issues for  $\geq$  15 years.
- Compact High-Field Tokamak Burning Plasma Experiment(s) would be a natural extension of the ongoing "advanced" tokamak program and could begin alphadominated experiments by ~ 10 years.
- More than one high gain burning plasma facility is needed in the world program.
- The information "exists now" to make a technical assessment, and decision on a magnetic fusion burning plasma experiment(s) for the next decade.

### **Critical Issues for FIRE and Magnetic Fusion**

The critical physics and engineering issues for FIRE are the same as those for fusion, the goal of FIRE is to help resolve these issues for magnetic fusion. The issues and questions listed below need to be addressed in the near future.

- Physics
  - confinement H-mode threshold, edge pedestal, enhanced H-mode, AT-modes
  - stability NTMs, RWM, disruptions: conducting wall? feedback coils? VDE(DN)?
  - heating and current drive ICRF is baseline: NBI & LHCD as upgrades?
  - boundary detached divertor operation, impurity levels, confinement
  - self-heating fast alpha physics and profile effects of alpha heating Development of self-consistent self-heated AT modes with external controls
- Engineering
  - divertor and first wall power handling (normal operation and disruptions)
  - divertor, first wall and vacuum vessel for long pulse AT modes
  - evaluate low inventory tritium handling scenarios, higher fluence TF insulator
  - complete many engineering details identified in FIRE Engineering Report
  - evaluate potential sites for Next Step MFE experiment
  - complete cost estimate for baseline, identify areas for cost reduction

### Major Conclusions of the FIRE Design Study

- Exploration, understanding and optimization of alpha-dominated (high-gain) burning plasmas are critical issues for all approaches to fusion.
- The tokamak is a cost-effective vehicle to investigate alpha-dominated fusion plasma physics and its coupling to advanced toroidal physics for MFE. The tokamak is technically ready for a next step to explore fusion plasma physics.
- The FIRE compact high field tokamak can address the important alphadominated plasma issues, many of the long pulse advanced tokamak issues and begin the integration of alpha-dominated plasmas with advanced toroidal physics in a \$1B class facility.
- The FIRE design point has been chosen to be a "stepping stone" between the physics accessible with present experiments and the physics required for the ARIES vision of magnetic fusion energy.
- A plan is being developed for an Advanced Tokamak Next Step that will address physics, engineering and cost issues in FY 2000-1 with the goal of being ready to begin a Conceptual Design in 2002.

# http://fire.pppl.gov