FIRE, A Potential Next Step Option for Magnetic Fusion

Dale M. Meade for the FIRE Study Team

Presented at Sherwood Snowmass Discussion Rochester, NY

April 23, 2002

http://fire.pppl.gov

FIRE's Goal is to Address the Critical Burning Plasma Science Issues for an Attractive MFE Reactor

Advanced Toroidal Physics (e.g., boostrap fraction)

Attain a burning plasma with confidence using "todays" physics, but allow the flexibility to explore tomorrow's advanced physics.

Next Step Option (FIRE) Program Advisory Committee

• **Members:** Tony Taylor (Chair), Gerald Navratil, Ray Fonck, David Gates, Dave Hill, Wayne Houlberg, Tom Jarboe, Mitsuro Kikuchi, Earl Marmar, Raffi Nazikian, Craig Petty, Rene Raffray, Paul Thomas, James VanDam

• Meetings

July 20-21, 2000 at General Atomics, San Diego, CA. January 17-18, 2001 at MIT, Cambridge, MA July 10-11, 2001 at Univ. Wisc, Madison, WI November 29-30 at LLNL, Livermore, CA

Charge for First and Second meetings

Scientific value of a Burning Plasma experiment Scientific readiness to proceed with such an experiment Is the FIRE mission scientifically appropriate? Is the initial FIRE design point optimal?

• Extensive PAC Reports provide detailed recommendations for the FIRE activity to address. NSO-PAC reports are on FIRE (<u>http://fire.pppl.gov</u>), will discuss in more detail under FY 2001-03 Plans.

FIRE Study is a Pre-Conceptual design, integrated costs (1998-2002) <\$12M.

Fusion Science Objectives for a Major Next Step Burning Plasma Experiment

Explore and understand the strong non-linear coupling that is fundamental to fusion-dominated plasma behavior (self-organization)

- Energy and particle transport (extend confinement predictability)
- Macroscopic stability (-limit, wall stabilization, NTMs)
- Wave-particle interactions (fast alpha particle driven effects)
- Plasma boundary (density limit, power and particle flow)
- Test/Develop techniques to control and optimize fusion-dominated plasmas.
- Sustain fusion-dominated plasmas high-power-density exhaust of plasma particles and energy, alpha ash exhaust, study effects of profile evolution due to alpha heating on macro stability, transport barriers and energetic particle modes.
- Explore and understand various advanced operating modes and configurations in fusion-dominated plasmas to provide generic knowledge for fusion and non-fusion plasma science, and to provide a foundation for attractive fusion applications.

Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q	\geq 5, ~ 10 as target, ignition not precluded
$f_{\alpha} = P_{\alpha}/P_{heat}$	\geq 50%, ~ 66% as target, up to 83% at Q = 25
TAE/EPM	stable at nominal point, able to access unstable

Advanced Toroidal Physics

$$\begin{split} f_{bs} &= I_{bs}/I_p & \geq 50\% & \text{up to } 75\% \\ \beta_N & \sim 2.5, \, \text{no wall} & \sim 3.6, \, n \, = 1 \text{ wall stabilized} \end{split}$$

Quasi-stationary Burn Duration

FIRE Has Adopted the AT Features Identified by ARIES Studies

- High toroidal field
- Double null
- Strong shaping - $\kappa = 2.0, \delta = 0.7$
- Internal vertical position control coils
- Cu wall stabilizers for vertical and kink instabilities
- Very low ripple (0.3%)
- ICRF/FW on-axis CD

- LH off-axis CD
- LHCD stabilization of NTMs
- Tungsten divertor targets
- Feedback coil stabilization of RWMs
- Burn times exceeding current diffusion times
- Pumped divertor/pellet fueling/impurity control to optimize plasma edge

Optimization of a Burning Plasma Experiment

• Consider an inductively driven tokamak with copper alloy TF and PF coils precooled to LN temperature that warm up adiabatically during the pulse.

• Seek minimum R while varying A and space allocation for TF/PF coils for a specified plasma performance - Q and pulse length with physics and eng. limits.

What is the optimum for advanced steady-state modes?

Fusion Ignition Research Experiment

(FIRE)

http://fire.pppl.gov

Design Features

- R = 2.14 m, a = 0.595 m
- B = 10 T
- W_{mag}= 5.2 GJ
- I_p = 7.7 MA
- $P_{aux} \leq 20 \text{ MW}$
- $Q \approx 10$, $P_{\text{fusion}} \sim 150 \text{ MW}$
- Burn Time \approx 20 s
- Tokamak Cost ≈ \$375M (FY99)
- Total Project Cost ≈ \$1.2B at Green Field site.

Mission: Attain, explore, understand and optimize magnetically-confined fusion-dominated plasmas.

CIT + TPX = FIRE leading to ARIES

FIRE Incorporates Advanced Tokamak Features

Direct and Guided Inside Pellet Injection

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

Basic Parameters and Features of FIRE

R, major radius	2.14 m			
a, minor radius	0.595 m			
кх, к95	2.0, 1.77			
δx, δ95	0.7, 0.55(AT) - 0.4(OH)			
q95, safety factor at 95% flux surface	>3			
Bt, toroidal magnetic field	10 T with 16 coils, 0.3% ripple @ Outer MP			
Toroidal magnet energy	5.8 GJ			
Ip, plasma current	7.7 MA			
Magnetic field flat top, burn time	28 s at 10 T in dd, 20s @ Pdt ~ 150 MW)			
Pulse repetition time	~3hr @ full field and full pulse length			
ICRF heating power, maximum	20 MW, 100MHz for $2\Omega T$, 4 mid-plane ports			
Neutral beam heating	Upgrade for edge rotation, CD - 120 keV PNBI?			
Lower Hybrid Current Drive	Upgrade for AT-CD phase, ~20 MW, 5.6 GHz			
Plasma fueling	Pellet injection (≥ 2.5 km/s vertical launch inside			
	mag axis, guided slower speed pellets)			
First wall materials	Be tiles, no carbon			
First wall cooling	Conduction cooled to water cooled Cu plates			
Divertor configuration	Double null, fixed X point, detached mode			
Divertor plate	W rods on Cu backing plate (ITER R&D)			
Divertor plate cooling	Inner plate-conduction, outer plate/baffle- water			
Fusion Power/ Fusion Power Density	150 - 200 MW, ~6 -8 MW m-3 in plasma			
Neutron wall loading	~ 2.3 MW m-2			
Lifetime Fusion Production	5 TJ (BPX had 6.5 TJ)			
Total pulses at full field/power	3,000 (same as BPX), 30,000 at 2/3 Bt and Ip			
Tritium site inventory	Goal < 30 g, Category 3, Low Hazard Nuclear Facility			

Guidelines for Estimating Plasma Performance

Confinement (Elmy H-mode) - ITER98(y,2) based on today's data base

$$\tau_{\rm E} = 0.144 \ {\rm I}^{0.93} \ {\rm R}^{1.39} {\rm a}^{0.58} \ {\rm n}_{20}^{0.41} {\rm B}^{0.15} {\rm A}_{\rm i}^{0.19} {\rm \kappa}^{0.78} \ {\rm P}_{\rm heat}^{-0.69} \ {\rm H(y,2)}$$

Density Limit - Based on today's tokamak data base

 $n_{20} \le 0.8 n_{GW} = 0.8 l_p / \pi a^2$,

Beta Limit - theory and tokamak data base

 $\beta \leq \beta_{N}(I_{p}/aB), \quad \beta_{N} < 2.5 \text{ conventional}, \beta_{N} \sim 4 \text{ advanced}$

H-Mode Power Threshold - Based on today's tokamak data base

Pth \geq (2.84/Ai) $n_{20}^{0.58} B^{0.82} Ra^{0.81}$, same as ITER-FEAT

Helium Ash Confinement $\tau_{He} = 5 \tau_{E}$, impurities = 3% Be, 0% W

Understanding is mainly empirical. Better understanding is needed from existing experiments with improved simulations, and a benchmark in alpha-dominated fusion plasmas is needed to confirm and extend the science basis.

FIRE would Extend the Transport Understanding Toward ARIES

 a/ρ_i evaluated at plasma ~ 0.5a

FIRE's Operating Density and Triangularity are Near the Optimum for the Elmy H-Mode

- The optimum density for the H-Mode is $n/n_{GW} \approx 0.6 0.7$
- H-mode confinement increases with δ
 - $\delta \approx 0.7$ FIRE
 - $\delta \approx 0.5$ ITER-FEAT
- Elm size is reduced for $\delta > 0.5$
- Z_{eff} decreases with density (Mathews/ITER scaling)
- DN versus SN ? C- Mod Exp'ts

Cordey et al, H = function (δ , n/n_{GW}, n(0)/<n>) EPS 2001

Increasing Triangularity Enhances H-Mode Confinement

Figure 2.2-2 Confinement Enhancement Factor Relative to the ITERH-98(y,2) Scaling as a Function of n/n_G in JET⁵

• Trade-off between triangularity and heating power: lower δ discharges need higher ${\rm P_{in}/P_{L-H}}$

Note: triangularity is determined at the separatrix

Figure 2.2-3 Confinement Enhancement Factor Relative to the ITERH-98P(y) Scaling as a Function of n/n_G in ASDEX Upgrade⁶

JET H-Mode Data Selected for FIRE-like Parameters

Projections to FIRE Compared to Envisioned Reactors

Simulation of Burning Plasma in FIRE

• ITER98(y, 2) with H(y, 2) = 1.1, n(0)/ $\langle n \rangle$ = 1.2, and n/ n_{GW} = 0.67

• Burn Time $\approx 20 \text{ s} \approx 21 \tau_E \approx 4 \tau_{He} \approx 2 \tau_{CR}$

Q = Pfusion/(Paux + Poh)

FIRE would Test a Sequence of AT Modes

Advanced Burning Plasma Physics could be Explored in FIRE

Tokamak simulation code results for H(y, 2) = 1.6, β_N = 3.5, would require RW mode stabilization. q(0) = 2.9, q_{min} = 2.2 @ r/a = 0.8, 8.5 T, 5.5 MA

Edge Physics and PFC Technology: Critical Issue for Fusion

Plasma Power and particle Handling under relevant conditions Normal Operation / Off Normal events

Tritium Inventory Control must maintain low T inventory in the vessel \Rightarrow all metal PFCs

Efficient particle Fueling pellet injection needed for deep and tritium efficient fueling

Helium Ash Removal need close coupled He pumping

Non-linear Coupling with Core plasma Performance nearly every advancement in confinement can be traced to the edge Edge Pedestal models first introduced in ~ 1992 first step in understanding Core plasma (low n_{edge}) and divertor (high n_{edge}) requirements conflict

Solutions to these issues would be a major output from a next step experiment.

Helium Ash Removal Techniques Required for a Reactor can be Studied on FIRE

Fusion power can not be sustained without helium ash punping.

TSC/Kessel/21-q.ps

Energetic Particle Drive can be Varied in FIRE Using Divertor Pumping and Pellet Injection

ITER-FEAT: Q = 10 H = 0.95, FIRE*: Q = 10 , H = 1.03, JET-U: Q = 0.64, H = 1.1

FIRE would Test the High Power Density In-Vessel Technologies Needed for ARIES-RS

Divertor Module Components for FIRE

Sandia

Finger Plate for Outer Divertor Module

Two W Brush Armor Configurations Tested at 25 MW/m²

Carbon targets used in most experiments today are not compatible with tritiun inventory requirements of fusion reactors.

FIRE In-Vessel Remote Handling System

In-vessel transporter

- Articulated boom deployed from sealed cask
- Complete in-vessel coverage from 4 midplane ports
- Fitted with different end-effector depending on component to be handled
- First wall module end-effector shown

Divertor end-effector

- High capacity (module wt. ~ 800 kg)
- Four positioning degrees of freedom
- Positioning accuracy of millimeters required

Engineering Peer Review June 5-7, 2001

- A Window of Opportunity may be opening for U.S. Energy R&D. We should be ready. The Modular or Multi-Machine Strategy has advantages for addressing the science and technology issues of fusion.
- FIRE with a construction cost ~ \$1B, has the potential to :
 - address the important burning plasma issues, performance ~ ITER
 - investigate the strong non-linear coupling between BP and AT,
 - stimulate the development of reactor relevant PFC technology, and
 - provide generic BP science and possibly BP infrastructure for non-tokamak BP experiments in the U. S.
- Some areas that need additional work to realize this potential include:
 - Apply recent enhanced confinement and advanced modes to FIRE
 - Understand conditions for enhanced confinement regimes-triangularity
 - Compare DN relative to SN confinement, stability, divertor, etc
 - Complete disruption analysis, develop better disruption control/mitigation.
- If a postive decision is made in this year, FIRE is ready to begin Conceptual Design in FY2003 with target of first plasmas ~ 2010.

http://fire.pppl.gov

Burning Plasma Physics - The Next Frontier

FIRE

US Based International Modular Strategy

ITER-FEAT

JA, EU or CA Based International Partnership

IGNITOR

Italian Based International Collaboration

FIRE Parameters and Design Goals

	FIRE	ITER-FEAT	ARIES-RS
κ_x/κ_{95}	2.0/1.77	1.85/1.7	2/1.7
δ_x/δ_{95}	0.7/0.4-0.55	0.49/0.33	0.7/0.5
Divertor	DN	SN	DN
R (m)	2.14	6.2	5.5
A = R/a	3.6	3.1	4.0
B (T)	10	5.3	8
I _p (MA)	7.7	15	11.3
$Q = P_{fus} / (P_{oh} + P_{aux})$	10	10	27
Burn Time (inductive) (s)	20	400	steady
Current Redistributions	~2	~2	infinite
P _{fusion} (MW)	150	400	2170
P _{fusion} /Vol (MW/m ³)	5.6	0.5	6.2
Neutron Wall loading (MW/m ²)	2.3	0.5	4
First Wall Thermal Equilib.	no	yes	yes
Divortor Targot matorial	١٨/	C(M/2)	١٨/
$D_{1} = D_{1} = D_{1} = \frac{1}{N} \frac{1}{2\pi B} \frac{1}{N} \frac{1}{2\pi B} \frac{1}{N} \frac{1}{2\pi B} \frac{1}{N} \frac{1}{2\pi B} \frac{1}{2\pi $	15		<u>vv</u> Q 1
Div Target Thermal Equilib	1.0	1.4(0.7)	0.1
Div. Larget Thermal Equilib.	yes	yes	yes

Potential Next Step Burning Plasma Experiments

* first , \$5.3 B for 10th of a kind

AR RS/ITERs/PCAST/FIRE/IGN

FIRE is a Modest Extrapolation in Plasma Confinement

The Multi-Machine Strategy for Magnetic Fusion

U.S. Burning Plasma Design Activity - FIRE

Preconceptual Design	Response to Snowmass	Plan	Conceptua	l Design	Prelim. Design
	Plan	Conce	ptual Design	Prelin	n. Design
	New In	itiative	e in FY 2003?	*************	

Burning_Plasa_sched