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The Fusion Science Center includes nine institutions: 
UR, MIT, UCSD, OSU, UNR, UCLA, GA, LLNL, ILSA 
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The Fusion Science Center is exploring new HED physics to 
facilitate ignition at NIF energies: strong shocks (Gbar level), 
high-Z plasmas, and magnetized HED plasmas

TC10449

Summary

•	 Shock-ignition	(SI) experiments on OMEGA show limited reflectivity and 
relatively cold hot electrons during the shock-launching power spike

•	 A	polar-drive,	shock-ignition	design	for	the	NIF	shows	robust	ignition	at	
700 kJ and 430 TW of total laser energy/power; there are still possible 
showstoppers—electron preheat during the assembly pulse and cross-
beam energy transfer 

•	 High-Z ablators (SiO2, Si, Al) reduce laser–plasma instabilities during 
the assembly pulse

•	 Magnetic	fields	improve	hot-spot	temperatures	and	facilitate	ignition;	
when	used	in	hohlraums,	B	fields	can	increase	the	plasma	temperature	
and reduce laser–plasma instabilities
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Shock ignition
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Shock ignition separates the fuel assembly phase  
from the ignition phase using a single laser system
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R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).

•	 Low	implosion	velocities,	higher	fuel	mass	 
lead to higher gains at a fixed laser energy
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Shock ignition makes use of massive shells ignited 
by the final shock leading to high energy gains 



Cryogenic experiments* with spike pulses have achieved 
good performance relative to 1-D simulations
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*R. Nora et al., Bull. Am. Phys. Soc. 56, 327 (2011).
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Planar experiments have validated the simulated shock 
pressures generated by high-intensity laser pulses  
in a long-scale-length plasma
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M. Hohenberger et al., “Shock-Ignition Experiments with Planar Targets on OMEGA,”  
submitted to Physical Review Letters.



Trajectories of high-pressure shocks driven at intensities 
up to ~1.5 × 1015 W/cm2 are in good agreement with 
simulation

TC10156a

FSC

100
160

120

80

40

0

2 3 4 5 6 7 8

50

0
0.0 0.5 1.0 1.5 2.0

Spike intensity (×1015 W/cm2)

S
im

u
la

te
d

 p
ea

k
p

re
ss

u
re

 (
M

b
ar

)

S
h

o
ck

 p
o

si
ti

o
n

in
 q

u
ar

tz
 (
n

m
)

Time (ns)

Simulation

Experiment

Up to 100 Mbar shock pressures are inferred.

M. Hohenberger et al., “Shock-Ignition Experiments with Planar Targets on OMEGA,”  
submitted to Physical Review Letters.



Hot-electron generation and capsule preheat  
must be well-characterized and controlled
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•	 Hot	electrons	at	moderate	
temperatures and conversion 
efficiencies during the spike  
may improve margin* 

•	 Preheat	during	the	main	drive	 
can raise the shell adiabat,  
ruining compression

FSC

At moderate hot-electron energy, electrons are stopped in the ablator, 
increasing the shock pressure during the spike pulse.
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Spherical implosions were performed on OMEGA  
using 40 beams to compress and 20 tightly focused 
beams to shock the target
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•	 The	delay	and	intensity	of	the	tightly	focused	beams	are	varied
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W. Theobald et al., Phys. Plasmas 19, 102706 (2012). 



Up to 16% of the shock-beam energy  
is converted into 40-keV hot electrons

E17864f

•	 Hot	electrons	are	from	stimulated	
Raman scattering

•	 No	two-plasmon-decay	(TPD) 
hard x-ray signal is measured
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Two-dimensional particle-in-cell simulations predict 
similar hot-electron temperature and conversion 
efficiency
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A two-picket shock-ignition pulse has been designed  
for the NIF at 700 kJ
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One-dimensional simulations predict the target is robust 
to laser-spike–generated hot electrons up to 150 keV
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Hot electrons below 100 keV may increase the ignition margin.
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Initial polar-drive pointing schemes use split–quads,  
two beams from each quad for the main drive, and two 
beams for the shock pulse

A	full-quad	repointing	shows	ignition—further	refinement	is	underway.

*S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).
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The two-picket shock-ignition point design gives a gain 
of 52 in split-quad polar drive at 750 kJ
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The polar-drive SI design can tolerate high levels  
of 2-D nonuniformities

TC10162a

Ignites in polar drive with

•	 5× NIF-spec inner ice roughness

•	 5× NIF-spec outer surface 
roughness in modes 2 to 50

•	 10%	rms	beam-to-beam	power	
imbalance

•	 100-ps	rms	beam-to-beam	
mistiming

•	 100-nm rms beam mispointing

•	 Expected	level	of	imprint	with	 
multi-FM*-SSD in modes 2 to 100

•	 Target	offset	up	25	nm
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*LLE Review Quarterly Report 114, 73, LLE Document No. DOE/NA/28302-826 (2008). 



High-Z ablators
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High-Z reduction of TPD is seen in experiments  
and simulations

TC10315a

•	 Hard	x-rays	(HRX) reduced  
by more than 40× in glass with 
respect to plastic at 1015 W/cm2* 

•	 Confirmed:

– on multiple materials in planar 
targets**

– in particle-in-cell (PIC)
simulations

– in quasilinear Zakharov model 
simulations

**V. A. Smalyuk et al., Phys. Rev. Lett. 104, 165002 (2010).
**D. H. Froula et al., Plasma Phys. Control. Fusion 54, 124016 (2012).
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The TPD cannot be driven above the linear threshold
in SiO2-ablator targets on OMEGA at 1015 W/cm2
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Shock-ignition, 700-kJ NIF SiO2 targets can be designed to 
be almost fully below threshold during the assembly pulse
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PIC simulations show that hot-electron production
in Si is negligible even at the end of the assembly pulse
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Applied Magnetic Fields 



A	magnetic	field	of	~25 MG was inferred  
in spherical implosions
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•	 Single-shot	data	indicated	that	the	field	is	compressed	
to ~25 MG in a spherical target; more shots are needed 
to	confirm	the	magnetic-field	measurements

M. Hohenberger et al., Phys. Plasmas 19, 056306 (2012).
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The neutron yields increased by ~30% in magnetized 
spherical targets
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•	 The	measured	ion	temperature	and	fusion	yield	were	improved	by	
15% and 30%, respectively, when the hot spot was magnetized

P. Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011).
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MIFEDS has been upgraded to be more robust  
and flexible in operation
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Experiments to control laser–plasma interactions with  
B	fields	in	hohlraums	have	been	carried	out	on	OMEGA

TC10287a
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Summary/Conclusions

•	 Shock-ignition	(SI) experiments on OMEGA show limited reflectivity and 
relatively cold hot electrons during the shock-launching power spike

•	 A	polar-drive,	shock-ignition	design	for	the	NIF	shows	robust	ignition	at	
700 kJ and 430 TW of total laser energy/power; there are still possible 
showstoppers—electron preheat during the assembly pulse and cross-
beam energy transfer 

•	 High-Z ablators (SiO2, Si, Al) reduce laser–plasma instabilities during 
the assembly pulse

•	 Magnetic	fields	improve	hot-spot	temperatures	and	facilitate	ignition;	
when	used	in	hohlraums,	B	fields	can	increase	the	plasma	temperature	
and reduce laser–plasma instabilities

The Fusion Science Center is exploring new HED physics to 
facilitate ignition at NIF energies: strong shocks (Gbar level), 
high-Z plasmas, and magnetized HED plasmas
FSC
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Fast electron control with magnetic field in hohlraums

Hohlraum:
wall - Au, 5 µm
l = 2.5 mm
d = 1.6 mm
dLEH = 1 mm

Parallel (axial) coils:
d = 6.75 mm
l = 4.0 mm
B = 10 T

Perpendicular (transverse) coils:
d = 3.55 mm
l = 4.0 mm
B = 8 T

G. Fiksel
Dec 3 2012

MIFEDS II

Monday, December 3, 2012
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In two shots with matching fill pressure at n = 0.04 ncr 
HXR decreases with axial field
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In two shots with matching fill pressure at n = 0.1 ncr 
there is no HXR reduction with axial field
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