Fusion Science Center Activities on Advanced ICF Ignition

FSC

R. Betti Fusion Science Center University of Rochester Laboratory for Laser Energetics Fusion Power Associates Meeting Washington, DC 5–6 December 2012

The Fusion Science Center includes nine institutions: UR, MIT, UCSD, OSU, UNR, UCLA, GA, LLNL, ILSA

The FSC is funded by the DOE - Office of Fusion Energy Sciences with matching funds from LLE/NYSERDA and U. Rochester

FSC

2013 High-Energy-Density-Physics Summer School

The Ohio State University Columbus, OH July 14 –20, 2013 FS

Summary

The Fusion Science Center is exploring new HED physics to facilitate ignition at NIF energies: strong shocks (Gbar level), high-Z plasmas, and magnetized HED plasmas

- Shock-ignition (SI) experiments on OMEGA show limited reflectivity and relatively cold hot electrons during the shock-launching power spike
- A polar-drive, shock-ignition design for the NIF shows robust ignition at 700 kJ and 430 TW of total laser energy/power; there are still possible showstoppers—electron preheat during the assembly pulse and crossbeam energy transfer
- High-Z ablators (SiO₂, Si, Al) reduce laser–plasma instabilities during the assembly pulse
- Magnetic fields improve hot-spot temperatures and facilitate ignition; when used in hohlraums, B fields can increase the plasma temperature and reduce laser-plasma instabilities

Shock ignition

Shock ignition separates the fuel assembly phase from the ignition phase using a single laser system FSO

• Low implosion velocities, higher fuel mass lead to higher gains at a fixed laser energy

Shock ignition makes use of massive shells ignited by the final shock leading to high energy gains

JL Perkins (LLNL)

A. Schmitt (NRL)

Cryogenic experiments* with spike pulses have achieved good performance relative to 1-D simulations FSE

Adiabat	3.5
Neutron yield (experimental)	5.6 × 10 ¹²
YOC (%)	33
hoR (mg/cm²)	200

*R. Nora et al., Bull. Am. Phys. Soc. 56, 327 (2011).

Planar experiments have validated the simulated shock pressures generated by high-intensity laser pulses in a long-scale-length plasma

40 µm Laser pulse history CH 30 µm 15 138 µm Мо Low quartz Total intensity Cone 1 Peak intensity (×10¹⁴) W/cm² Cone 2 10 High **VISAR** intensity SOP Cone 3 5 Laser backscatter 0 17.5 keV 2 0 3 Mo K_{α} Hard Time (ns) x rays

M. Hohenberger *et al.*, "Shock-Ignition Experiments with Planar Targets on OMEGA," submitted to Physical Review Letters.

Trajectories of high-pressure shocks driven at intensities up to $\sim 1.5 \times 10^{15}$ W/cm² are in good agreement with simulation

Up to 100 Mbar shock pressures are inferred.

M. Hohenberger *et al.*, "Shock-Ignition Experiments with Planar Targets on OMEGA," submitted to Physical Review Letters.

FSC

Hot-electron generation and capsule preheat must be well-characterized and controlled

- Hot electrons at moderate temperatures and conversion efficiencies during the spike may improve margin*
- Preheat during the main drive can raise the shell adiabat, ruining compression

At moderate hot-electron energy, electrons are stopped in the ablator, increasing the shock pressure during the spike pulse.

Spherical implosions were performed on OMEGA using 40 beams to compress and 20 tightly focused beams to shock the target

• The delay and intensity of the tightly focused beams are varied

FSC

Up to 16% of the shock-beam energy is converted into 40-keV hot electrons

- Hot electrons are from stimulated Raman scattering
- No two-plasmon-decay (TPD) hard x-ray signal is measured

UR

Two-dimensional particle-in-cell simulations predict similar hot-electron temperature and conversion efficiency

A two-picket shock-ignition pulse has been designed for the NIF at 700 kJ

One-dimensional simulations predict the target is robust to laser-spike-generated hot electrons up to 150 keV

Hot electrons below 100 keV may increase the ignition margin.

Initial polar-drive pointing schemes use split–quads, two beams from each quad for the main drive, and two beams for the shock pulse

The two-picket shock-ignition point design gives a gain of 52 in split-quad polar drive at 750 kJ FSC

LLE

The polar-drive SI design can tolerate high levels of 2-D nonuniformities

Ignites in polar drive with

FSC

- 5× NIF-spec inner ice roughness
- 5× NIF-spec outer surface roughness in modes 2 to 50
- 10% rms beam-to-beam power imbalance
- 100-ps rms beam-to-beam mistiming
- 100- μ m rms beam mispointing
- Expected level of imprint with multi-FM*-SSD in modes 2 to 100
- Target offset up 25 μ m

uncertainty.

High-Z ablators

High-Z reduction of TPD is seen in experiments and simulations

FSC	

- Hard x-rays (HRX) reduced by more than 40× in glass with respect to plastic at 10^{15} W/cm^{2*}
- Confirmed:
 - on multiple materials in planar targets**
 - in particle-in-cell (PIC) simulations
 - in quasilinear Zakharov model simulations

^{*}V. A. Smalyuk et al., Phys. Rev. Lett. <u>104</u>, 165002 (2010).

^{**}D. H. Froula et al., Plasma Phys. Control. Fusion <u>54</u>, 124016 (2012).

The TPD cannot be driven above the linear threshold in SiO₂-ablator targets on OMEGA at 10^{15} W/cm²

Shock-ignition, 700-kJ NIF SiO₂ targets can be designed to be almost fully below threshold during the assembly pulse

PIC simulations show that hot-electron production in Si is negligible even at the end of the assembly pulse FSE

Applied Magnetic Fields

A magnetic field of ~25 MG was inferred in spherical implosions

 Single-shot data indicated that the field is compressed to ~25 MG in a spherical target; more shots are needed to confirm the magnetic-field measurements UR

FSC

The neutron yields increased by ~30% in magnetized spherical targets

• The measured ion temperature and fusion yield were improved by 15% and 30%, respectively, when the hot spot was magnetized

MIFEDS has been upgraded to be more robust and flexible in operation

FSC

Experiments to control laser–plasma interactions with B fields in hohlraums have been carried out on OMEGA \overrightarrow{FSE}

Use the B fields to magnetize electrons, decrease heat conductivity, increase temperature and supress LPI (SRS and TPD)

Summary/Conclusions

The Fusion Science Center is exploring new HED physics to facilitate ignition at NIF energies: strong shocks (Gbar level), high-Z plasmas, and magnetized HED plasmas

- Shock-ignition (SI) experiments on OMEGA show limited reflectivity and relatively cold hot electrons during the shock-launching power spike
- A polar-drive, shock-ignition design for the NIF shows robust ignition at 700 kJ and 430 TW of total laser energy/power; there are still possible showstoppers—electron preheat during the assembly pulse and crossbeam energy transfer
- High-Z ablators (SiO₂, Si, Al) reduce laser–plasma instabilities during the assembly pulse
- Magnetic fields improve hot-spot temperatures and facilitate ignition; when used in hohlraums, B fields can increase the plasma temperature and reduce laser-plasma instabilities

Fast electron control with magnetic field in hohlraums

Hohlraum: wall - Au, 5 µm l = 2.5 mm d = 1.6 mm d_{LEH} = 1 mm

Parallel (axial) coils: d = 6.75 mm l = 4.0 mm B = 10 T

Perpendicular (transverse) coils: d = 3.55 mm I = 4.0 mm B = 8 T

> G. Fiksel Dec 3 2012

In two shots with matching fill pressure at n = 0.04 n_{cr} HXR decreases with axial field

In two shots with matching fill pressure at $n = 0.1 n_{cr}$ there is no HXR reduction with axial field

