The DOE Program in High Energy Density Physics: New Initiatives in Matter in Extreme Conditions

Siegfried H. Glenzer (SLAC)

December 11, 2013

Outline

- LCLS Free Electron Laser facility.
 - Unprecedented capabilities at the MEC instrument [since 4/2012]
 - 10¹² x-ray photons for pump-prober experiments
 - High spectral resolution (seeded beam)
 - High wavenumber resolution (x-ray laser)
 - High temporal resolution (20-50 fs)
- Novel X-ray scattering experiments
 - First observation of Plasmon shift in shock-compressed plasmas
 - First continuous measurements of the dynamic structure factor
 - First observations of ion acoustic waves in warm dense plasmas
 - Pressures approaching 5-10 Mbar at 3x compressed Al
 - Test theoretical methods to determine pressures of dense matter
- Summary
 - High power laser workshop and outlook towards a bright future

We have a new precision tool to measure physical properties and to make transformative discoveries in High-Energy Density physics

Three big science questions

Develop and apply precision pump-probe experiments with the world-class LCLS beam to answer the most important questions in high energy density (HED) science

- Relativistic laser plasma interactions: Uncover the physical mechanisms for ultra short pulse laser matter interactions, plasma heating and particle acceleration
- Laboratory astrophysics:

Ultra-high power optical lasers offer the unique opportunity to produce and characterize collision-less shocks, particle acceleration, and anti-matter plasmas

 Strong shocks and High Pressure phenomena: The use of LCLS will probe high pressure states found at the center of the large Jovian plants, the earth's deepest interior and in inertial confinement fusion with unprecedented precision

SLAC

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing 3-km linac 1.5-15 Å Injector (35°) (14-4.3 GeV)

Existing 1/3 Linac (1 km) (with modifications)

X-ray Transport Line (200 m)

Undulator (130 m)
— Near Experiment Ha

-Far Experiment Hall

Experiments at the Matter at Extreme Conditions end station

We perform novel pump-probe measurements of plasma conditions and shocks with 1 μ m, 30 fs resolution

Experimental geometry uses counter propagating long pulse lasers and a delayed LCLS beam

Experimental geometry uses counter propagating long pulse lasers and a delayed LCLS beam

High resolution x-ray scattering observations of plasmons in Al using the seeded beam at 8 keV

High resolution x-ray scattering observations of plasmons in Al using the seeded beam at 8 keV

- Plasmon resonance determined by plasma frequency $\omega_{pe} = [n_e e^2/m_e \epsilon_0]^{1/2}$
 - Glenzer et al., 2007 PRL
 - Kritcher et al., 2008 Science
- First observation of acoustic resonances at ω_{ac} ~ [kT_e/m_i]^{1/2}

High resolution x-ray scattering observations of plasmons in Al using the seeded beam at 8 keV

- Plasmon resonance determined by plasma frequency $\omega_{pe} = [n_e e^2/m_e \epsilon_0]^{1/2}$
 - Glenzer et al., 2007 PRL
 - Kritcher et al., 2008 Science
- First observation of acoustic resonances at ω_{ac} ~ [kT_e/m_i]^{1/2}

Theoretical fit to the plasmon spectrum determines solid- density conditions

Total cross-section includes free, tightly, and weakly bound states

SLAC

$$\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \sigma_T \frac{k_1}{k_o} S(k, \omega)$$
$$S(k, \omega) =$$

Ion Feature: $\left|f_{1}(k)+q(k)\right|^{2}S_{ii}(k,\omega)$

Electron Feature:

Bound-Free Feature:

Theoretical fit to the plasmon spectrum determines solid- density conditions

Total cross-section includes free, tightly, and weakly bound states $\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \sigma_T \frac{k_1}{k_0} S(k, \omega)$ $S(k,\omega) =$ Ion Feature: $\left|f_{1}(k)+q(k)\right|^{2}S_{ii}(k,\omega)$ **Electron Feature:** $+Z_f S_{ee}^o(k,\omega)$ **Bound-Free Feature:** $+Z_{c}\int S_{ce}(k,\omega-\omega')S_{ce}(k,\omega')\partial\omega'$

SLAC

We now have an accurate (first-principals) method that determines the physical properties of warm dense matter: $n_e = 1.8 \times 10^{23} \text{ cm}^{-3} \pm 5\%$

Intensity

Theoretical fit to the plasmon spectrum determines solid- density conditions

Total cross-section includes free, tightly, and weakly bound states

SLAC

$$\frac{\partial^2 \sigma}{\partial \Omega \partial \omega} = \sigma_T \frac{k_1}{k_o} S(k, \omega)$$
$$S(k, \omega) =$$

Ion Feature: $|f_1(k) + q(k)|^2 S_{ii}(k,\omega)$

Electron Feature: + $Z_f S_{ee}^o(k, \omega)$

Bound-Free Feature: + $Z_c \int \tilde{S}_{ce} (k, \omega - \omega') S_{ce} (k, \omega') \partial \omega'$

Plasmon measurements accurately determine 3x compressed AI at temperatures of 2.5 eV

We now have an accurate (first-principals) method that determines the physical properties of warm dense matter: $n_e = 4.7 \times 10^{23} \text{ cm}^{-3} \pm 5\%$

Glenzer, FPA meeting, December 11, 2013

First Observation of ion-acoustic waves in Warm Dense Matter

SLAC

Al @ $\rho = 7.0 \pm 0.9 \text{ g/cm}^3$ $\Omega = 152 \pm 13 \text{ meV}$

20=30°, Q=2.1 Å⁻¹ Q₀=3.7±0.1 Å⁻¹; Q/Q₀=0.57

G. Monaco, J. Hastings, G. Gregori et al., unpublished

Monochromator for LCLS beam: Si(4,4,4): $\Delta E/E = 5 \times 10^{-6}$

diced Si(444) crystal with R=1 m & θ =87° \Rightarrow 100 meV @ 7919 eV

Clear evidence of double shock compression at the time of shock coalescence by directly monitoring the ion-ion correlation peak Bragg equation: nλ = 2d sinθ Helios simulation 3

Clear evidence of double shock compression at the time of shock coalescence by directly monitoring the ion-ion correlation peak

Clear evidence of double shock compression at the time of shock coalescence by directly monitoring the ion-ion correlation peak

Wavenumber resolved scattering data resolves interactions on atomic scales

Combined with plasmon data these experiments yield a critical experimental test

Angularly and spectrally resolved data show that the shift of W_R(k) is determined by short range repulsion

- The peak of the ion-ion structure factor provides a well pronounced diagnostic feature
- After calibration against plasmon scattering the wavenumber of the maximum of W(k) can be used to infer densities
- Short range repulsion is an indication of negative screening
- Important consequences when determining the pressure

Glenzer, FPA meeting, December 11, 2013

The internal energy per particle (and consequently the pressure) depends on S(k)

[1] Galam and Hansen, Phys Rev. A, 14 (1976)
[2] R. P. Drake, *High-Energy-Density Physics*, (2006)
Glenzer, FPA meeting, December 11, 2013

Total pressure - $P(n_e, T_{e}, S(k))$

 $P_{TOT} = P_i + P_e$ lon pressure $P_i = p^x + P_G$ Excess ion pressure [1] $p^{x} = \frac{n_{i}U^{(0)}}{3N} - \frac{n_{i}(Ze)^{2}}{12\pi^{2}} \int_{0}^{\infty} S(k) \frac{k_{e}^{4}}{(k^{2} + k^{2})^{2}} \partial k$ Ideal gas pressure $P_G = n_i k_B T_i$ **Electron pressure** $P_e = P_F + P_{deg} + P_C + P_{rc}$ Fermi pressure [2] $P_F = \frac{h^2}{20m} \left(\frac{3}{\pi}\right)^{2/3} n_e^{5/3}$ Quantum electron degeneracy pressure [1] $P_{\text{deg}} = \frac{\pi m_e^4 c^5}{3h^3} \left[R(2R^2 - 3)\sqrt{1 + R^2} + 3\sinh^{-1}R \right] \quad R = \frac{P_F}{m_e c}$ Coulomb negative pressure [1] $P_{C} = -\frac{8\pi^{3}m_{e}^{4}c^{5}}{h^{3}} \left[\frac{\alpha Z^{2/3}}{10\pi^{2}} \left(\frac{4}{9\pi} \right)^{1/3} \right] R^{4} \quad \alpha = \frac{e^{2}}{4\pi\varepsilon_{0}\hbar c}$ Electron-exchange pressure [1] $P_{xc} = -\frac{2\alpha m_e^4 c^5}{\hbar^3} \beta^*$

The internal energy per particle (and consequently the pressure) depends on S(k)

[1] Galam and Hansen, Phys Rev. A, 14 (1976)
[2] R. P. Drake, *High-Energy-Density Physics*, (2006)
Glenzer, FPA meeting, December 11, 2013

Total pressure - P(n_e,T_e,S(k))

 $P_{TOT} = P_i + P_e$ lon pressure $P_i = p^x + P_G$ Excess ion pressure [1] $p^{x} = \frac{n_{i}U^{(0)}}{3N} - \frac{n_{i}(Ze)^{2}}{12\pi^{2}} \int_{0}^{\infty} S(k) \frac{k_{e}^{4}}{(k^{2} + k^{2})^{2}} \partial k$ Ideal gas pressure $P_G = n_i k_B T_i$ **Electron pressure** $P_e = P_F + P_{deg} + P_C + P_{rc}$ Fermi pressure [2] $P_F = \frac{h^2}{20m} \left(\frac{3}{\pi}\right)^{2/3} n_e^{5/3}$ Quantum electron degeneracy pressure [1] $P_{\text{deg}} = \frac{\pi m_e^4 c^5}{3h^3} \left[R(2R^2 - 3)\sqrt{1 + R^2} + 3\sinh^{-1}R \right] \quad R = \frac{P_F}{mc}$ Coulomb negative pressure [1] $P_{C} = -\frac{8\pi^{3}m_{e}^{4}c^{5}}{h^{3}} \left[\frac{\alpha Z^{2/3}}{10\pi^{2}} \left(\frac{4}{9\pi}\right)^{1/3}\right] R^{4} \quad \alpha = \frac{e^{2}}{4\pi\varepsilon_{0}\hbar c}$ Electron-exchange pressure [1] $P_{xc} = -\frac{2\alpha m_e^4 c^5}{L^3} \beta^*$

The internal energy per particle (and consequently the pressure) depends on S(k)

[1] Galam and Hansen, Phys Rev. A, 14 (1976)
[2] R. P. Drake, *High-Energy-Density Physics*, (2006)
Glenzer, FPA meeting, December 11, 2013

Total pressure - P(n_e,T_e,S(k))

 $P_{TOT} = P_i + P_e$ lon pressure $P_i = p^x + P_G$ Excess ion pressure [1] $p^{x} = \frac{n_{i}U^{(0)}}{3N} - \frac{n_{i}(Ze)^{2}}{12\pi^{2}} \int_{0}^{\infty} S(k) \frac{k_{e}^{4}}{(k^{2} + k^{2})^{2}} \partial k$ Ideal gas pressure $P_G = n_i k_B T_i$ **Electron pressure** $P_e = P_F + P_{deg} + P_C + P_{rc}$ Fermi pressure [2] $P_F = \frac{h^2}{20m} \left(\frac{3}{\pi}\right)^{2/3} n_e^{5/3}$ Quantum electron degeneracy pressure [1] $P_{\text{deg}} = \frac{\pi m_e^4 c^5}{3h^3} \left[R(2R^2 - 3)\sqrt{1 + R^2} + 3\sinh^{-1}R \right] \quad R = \frac{P_F}{mc}$ Coulomb negative pressure [1] $P_{C} = -\frac{8\pi^{3}m_{e}^{4}c^{5}}{h^{3}} \left[\frac{\alpha Z^{2/3}}{10\pi^{2}} \left(\frac{4}{9\pi}\right)^{1/3}\right] R^{4} \quad \alpha = \frac{e^{2}}{4\pi\varepsilon_{0}\hbar c}$ Electron-exchange pressure [1] $P_{xc} = -\frac{2\alpha m_e^4 c^5}{L^3} \beta^*$

The internal energy per particle (and consequently the pressure) depends on S(k) SLAC

[1] Galam and Hansen, Phys Rev. A, 14 (1976)
[2] R. P. Drake, *High-Energy-Density Physics*, (2006)
Glenzer, FPA meeting, December 11, 2013

Total pressure - P(n_e,T_e,S(k))

The shift and change in peak intensity of the correlation peak for 1.8x and 2.75x compressed aluminum, modeled using HNC-Y+SRR, can serve as a dynamic density diagnostic

SLAC

continuous wavenumber resolved measurement

The shift and change in peak intensity of the correlation peak for 1.8x and 2.75x compressed aluminum, modeled using HNC-Y+SRR, can serve as a dynamic density diagnostic

SLAC

Continuous wavenumber resolved measurement

The ion-ion correlation peak has been measured in a number of shock-compressed samples

L. Fletcher et al., to be submitted

Workshop on high power lasers at SLAC

SLAC NATIONAL ACCELERATOR LABORATORY

SLAC High Power Laser Workshop

Home

High-Power Laser Workshop

SAVE THE DATE: October 1-2, 2013

SLAC National Accelerator Laboratory, Menlo Park, USA

This workshop will bring together the international science community to discuss the unique physics opportunities enabled by the new 200 TW laser at the Linac Coherent Light Source (LCLS). Coupling this laser to the world-class LCLS x-ray beam at the recently commissioned Matter in Extreme Condition (MEC) instrument will allow exquisite pump-probe experiments to address the most important physics questions of high-power laser plasma interactions physics in areas of high-energy density physics, laboratory astrophysics, laser-particle acceleration, and non-linear optical science.

The workshop will highlight recent results from MEC, describe the scientific opportunities for laser experiments at 200 TW and PW power and present and discuss the user access policy for performing laser experiments at MEC.

Hosts

Dr. Roger Falcone Director of the Advanced Light Source, Lawrence Berkeley National Laboratory Dr. Siegfried Glenzer Distinguished Staff Scientist, SLAC National Accelerator Laboratory Dr. Stefan Hau-Riege

Physicist, Lawrence Livermore National Laboratory

SLAC NATIONAL ACCELERATOR LABORATORY 2575 Sand Hill Road, Menio Park, CA 94025 Operated by Stanford University for the U.S. Department of Energy Office of Science

<u>si ac</u>

Sponsors – thank you

- Support from DOE, Institutes, LCLS, company sponsors, and SLAC
 - Support 14 renowned speakers and discussion leaders
 - Support 19 students/postdoctoral scientists
- >140 scientists registered
 - 19 US university groups from 17 US universities
 - 8 US National laboratories
 - 11 US companies
 - 18 international groups from 9 countries

Nothing but ultraf Ast.

SLAC

Continuum

THALES

High-Power Laser workshop at SLAC, October 1st-2nd

MEC user workshop on High-Power Lasers 2013

19 US university groups from 17 US universities

8 US National laboratories

11 US companies

SLAC

MEC user workshop on High-Power Lasers 2013

18 international groups from 10 different countries

Goals for the workshop

- To perform world-class HED physics at MEC/LCLS
- Need the input of the HED/HEDLP community
 - What are the important new directions in HEDLP?
 - How can we make best use of the unique combination of high-power lasers and LCLS x-rays?
 - What ideas need LCLS x-rays the most?
 - What new diagnostics and instrumentation is needed?

	High-Power Laser workshop schedule	
Part I	HED Physics at the MEC Instrument	
	Featured evening presentation	
Part II	Frontiers of High-Power Laser-Matter Interactions	
Part III	High-Power Laser Science and Technology	
Part IV	New Directions	
Part V	MEC capabilities and priorities	
	Discussions	

SLAC

A new 200 TW-class laser will access important areas of Matter at Extreme Conditions SLAC

- Accurate probing of physics mechanisms will be accomplished by X-ray Thomson scattering with the LCLS beam
- Provides accurate temperature and density measurements
- Resolve micron scale length and fs time scales
- Determine laser coupling, heating, and pressure conditions

Path towards optimizing use of high-power petawatt lasers

Combining High-Power lasers with the world-class LCLS beam will allow novel experiments

Coupling of high-power lasers with matter

Fundamental laser-particle acceleration physics

- 100+ MeV protons
- Positrons
- Neutrons
- 10+ GeV electrons

Physical properties of

hot dense matter

Laboratory astrophysics

SLAC

Proton radiograph of E & B fields

X-ray Thomson scattering on hot dense matter matter

- Mbar pressures
- Isochorically heated matter
- Ultrafast phase transitions
- Self organization in plasmas
- Weibel instabilities
- Collision less shocks
- Cosmic rays

Recent experiments have demonstrated a 200 TW laser driven betatron source

Laser-particle acceleration holds promise for new discoveries and applications

Betatron x-rays from a 200 TW laser experiments provides 100 fs white light x-rays that scale to 100 keV for PW lasers

SLAC

How does the peak brightness of a betatron x-ray source compare with other approaches?

How does the peak brightness of a betatron x-ray source compare with other approaches?

Parameter	Specification	
Energy range	1-100 keV (broadband)	
X-ray flux	10 ⁸ photons/shot	
Source size	1 micron	
Source divergence	1-10 mrad (collimated)	
Source duration	60 fs	
Source maximum peak brightness	10 ²² photons/(mm ² x mrad ² x s. x 0.1 % BW)	

Betratron radiator combine high brightness with high temporal resolution for x-ray x-ray pump probe experiments

Outline

- LCLS Free Electron Laser facility.
 - Unprecedented capabilities at the MEC instrument [since 4/2012]
 - 10¹² x-ray photons for pump-prober experiments
 - High spectral resolution (seeded beam)
 - High wavenumber resolution (x-ray laser)
 - High temporal resolution (20-50 fs)
- Novel X-ray scattering experiments
 - First observation of Plasmon shift in shock-compressed plasmas
 - First continuous measurements of the dynamic structure factor
 - First observations of ion acoustic waves in warm dense plasmas
 - Pressures approaching 5-10 Mbar at 3x compressed Al
 - Test theoretical methods to determine pressures of dense matter
- Summary
 - High power laser workshop and outlook towards a bright future

We have a new precision tool to measure physical properties and to make transformative discoveries in High-Energy Density physics

End of Presentation

Discussion to combine LCLS with a PW laser Example: 400J green will pump a 200 J, 200 fs laser

These class of experiments have been initially proposed to DOE OFS

FORWARD proposal (Fundamental Optical Research With Advanced x-Ray Diagnostics)

SLAC

Plasmon measurements accurately determine temperature and density

- Strong sensitivity to plasma frequency $\omega_{pe} = [n_e e^2/m_e \epsilon_0]^{1/2}$
- Strong sensitivity to structure factor
 S_{ii}(k)

SLAC

Wavenumber resolved scattering data indicate negative screening

The measured densities from plasmon data yields a critical experimental test of the ion structure factor, where a strong sensitivity also provides an accurate temperature measurement

Glenzer, FPA meeting, December 11, 2013

LCLS experiments of the microphysics have provided new insights in ICF ablator physics

- X-ray Thomson scattering experiments at Omega have shown densities of n_e = 10²⁴cm⁻³ a factor of 2 higher than standard radiationhydrodynamic simulations with a Thomas-Fermi model
- Using improved continuum lowering models tested in LCLS experiments (Stewart-Pyatt, Ecker-Kröll) provide excellent agreement
- The conditions emulate ICF capsule ablator conditions during ICF implosions accurate modeling of these plasmas is important to calculate hydrodynamic instabilities and compression

X-ray Thomson scattering measurements of highly compressed CH at 50 Mbar ICF conditions (Fletcher et al.)

A.L. Kritcher et al., PRL 107, 015002 (2011),
L. Fletcher, Phys. Plasmas (2013), in print

** O. Ciricosta et al., PRL 109, 065002 (2012)

SLAC

Laser-particle acceleration holds promise for new discoveries and applications

Laser wakefield >1 GeV acceleration of electrons

Laser proton and He+ acceleration to >100 MeV

Neutron beams >2 e9 neutrons

SLAC

Multi-GeV electrons Electron – x-ray interactions Isochoric heating Record magnetic fields

- K. Krushelnik
- B. Pollock
- T. Tajima
- C. Haefner

Glenzer, SAC meeting, October 24, 2013

Isochoric heating of matter Equation of state of warm dense matter Medical applications

- T. Ditmire
- M. Hegelich
- M. Roth
- G. Korn

٠

G. Mourou

Fusion processes Fusion diagnostics and target chambers

Material science

- E. Moses
- D. Froula
- P. Chen
- J. Wark

Plasmas produced with high-intensity lasers accelerate and wiggle electrons to emit Betatron x-rays

To obtain ~ 25 keV Betatron X-rays we need:

High energy electrons (γ >1000 or E>0.5 GeV) Electron densities 10¹⁸-10¹⁹ cm⁻³ Oscillations amplitude 1-5 µm

Novel particle acceleration mechanism based on Weibel instability from high power laser-driven currents SLAC

49

A fully developed Weibel mediated collision-less shock can be driven by a high laser power

Simulations predict observations of high energy particles at PW laser power