

General Fusion

Fusion Power Associates - 2013 Annual Meeting

LINUS Concept (1976)

The MTF "Solution"

Recognized as:

- Low cost
- Practical

Fixed:

- First wall problem
- Stand off problem
- Cost/shot problem
- Fuel rebreeding

General Fusion's Acoustically Driven MTF

Mini-sphere – 14 full scale pistons, liquid metal vortex

Fusion Power Associates - 2013 Annual Meeting

Liquid Pb Vortex Collapse

RM Instabilities and Simulation

Fusion Power Associates - 2013 Annual Meeting

Plasma Injector Design

Power Supply

- 2.4 MJ pulse power supply (22 kV formation, 44 kV acceleration)
- programmable pulse shaping control
- 1 MW DC stuffing flux power supply

Diagnostics

- Thomson scattering
- 5 interferometer chords
- >12 Rogowski coils
- >50 B-dot probes with in-situ integration
- high resolution time resolved spectroscopy
- 1 million frame/second video camera
- X-ray photo diodes
- triple Langmuir probe

Largest Plasma Injectors ever built

Record spheromak plasma energy (~100 kJ)

Plasma temperatures over 200 eV (>2.3M °C)

Density of 10¹⁶ cm⁻³

Plasma Acceleration

Compressible Plasma Challenge

Plasma Formation

Plasma Formation

Fusion Power Associates - 2013 Annual Meeting

Plasma Compression Pursuit of 500 eV at 493

- 10¹⁴ cm⁻³
- 40 eV
- 0.2 T
- 8x10¹⁴ cm⁻³
- 160 eV
- 0.8 T
- Adiabatic!
- 6x10¹⁵ cm⁻³
- 3.2 T
- 200 eV
- Expect >600 eV, not adiabatic

Formation

2X Radial Compression

4X Radial Compression

Plasma Injector: Confinement

Plasma Compression Experiments

Experiments designed to verify:

- a) Plasma heat loss
- b) Plasma / wall interaction

Small Tests

• Achieve 10 keV

Large Tests

- Achieve 10 keV, 10²⁰cm⁻³, 10µs
- ✓ Equivalent net gain

Plasma Compression: Liner Experiments

Fusion Power Associates - 2013 Annual Meeting

Plasma Compression: First Test May 2012

Fusion Power Associates - 2013 Annual Meeting

Plasma Compression Configuration Improvement

Small Injector Plasma Improvement: May, 2013

Fusion Power Associates - 2013 Annual Meeting

Plasma Compression Test 2: Magnetic Field Data

Test 2: Spectra during different time periods

Plasma Compression Diagnostics Layout

Plasma Compression Cross Section

Cone Configuration - Tilt Unstable

Thicker Walled Compression Chamber

Modified "Chalice" Shape

Fusion Power Associates - 2013 Annual Meeting

Chalice Shape: Tilt Stable

Small Injector Plasma Improvement: December, 2013

μs

The Path Forward: 2014

Fusion Power Associates - 2013 Annual Meeting

Clean energy. Everywhere. Forever.

general fusion

Doug Richardson CEO doug@generalfusion.com 604-439-3003