Fusion Program at General Atomics

Fusion at General Atomics: Major Contributions in Five Areas

- Inertial Fusion Technology Targets for ICF and diagnostics
- ITER Components Central solenoid manufacture Diagnostics
- Theory and Computation

DIII-D Program

International Collaboration

General Atomics Provides Inertial Confinement Fusion Targets

• ICF target fabrication support, since 1991:

- Target fab & characterization
- Target cryogenic systems
- Materials & processes development
- Diagnostics & pinholes
- Onsite assembly & fielding

• GA is largest supplier of targets

- >10,000's targets & components / year
- Staff ~115
- Supporting: LANL, LLE, LLNL, SNL, SLAC, Scarlet; International: AWE, CEA, ILE, LULI, CELIA

DOE & GAs' investments have built a unique target facility

- Strong collaboration with labs
- Central hub for target fab

Lab	Targets or Components
LANL	664
LLE	859
LLNL	1,445
NLUF	850
LBS	571
SNL	685
NIF	5,908
SLAC	6*
Diagnostics	1,303
Other	1,537
*= Hundreds of target sites per	
target assy	

Experiments

- ~200 at NIF (LLNL)
- ~1000 at OMEGA/EP (LLE)
- 6 series on LCLS represents >1000 shots (SLAC)
- >100 on Z machine (SNL)

<u>University Collaborators</u>: M.I.T.; Princeton; U of Michigan; U of Nevada, Reno; Caltech; UCSD; UC Berkley; Stanford; Rice Univ.; ARTEP; U of New Hampshire;

General Atomics Develops Transformational Diagnostics for ICF and HED Experiments (with International Collaborators)

Pulse-dilation imaging (Kentech)

 Pioneered technique which gives 10X faster gates for imagers (≥5ps)

DIXI – Dilation X-Ray Imager (Kentech & LLNL)

- Designed, built and fielded a 5 ps x-ray imager for the NIF
- Recent results reveal unprecedented levels of detail in implosion dynamics

Ultrafast Photodetectors (Kentech, Photek, LANL)

 Developing 10X faster photodetectors for upgrades to gamma detectors, optical Thomson scattering, ...

> High Fidelity DIXI → Implosion Images On NIF

DIXI on NIF

T. S. Taylor/FPA/Dec, 2014

General Atomics is Fabricating Three Diagnostic Systems for ITER

Low Field Side Refectometer (GA/UCLA)

Toroidal Interferometer Polarimeter GA/UCLA/PSI)

IR/Visible Wide Angle Viewing system (GA/LLNL/TNO/Univ Ariz.)

5 upper port camera systems

General Atomics is Manufacturing the ITER Superconducting Central Solenoid

- Six modules plus structure ~900 tonnes
- Each module weighing 110 tonnes has 560 turns (6.5km of conductor)
- Nb₃Sn CICC Conductor supplied by JAEA in 1km lengths

Tooling is Installed and Tested for Manufacturing of CS Modules

Two parallel lines can wind the 49mm square jacketed superconductor into 14 turn pancakes

Prototype coil winding: 900m of continuous winding forms 6 out of 40 coil layers

Argon atmosphere furnace for heat treating superconductor. A geometric representation of CS Module is used to qualify the convection furnace for operation with the coils

Insulation and Final Test Stations Are Being Completed

GA Theory and Computational Science Department Developing Fundamental Understanding of Fusion Plasmas

- Advances in analytic theory and world class numerical tools, eg
 - GYRO: electromagnetic turbulence
 - M3D-C1, ELITE, GATO: core/edge MHD
 - NEO: neoclassical transport
 - OMFIT: integrated modeling
- Extensive validation with DIII-D and other experiments builds confidence in understanding
 - Turbulence simulations compared to measurements across multiple spatiotemporal scales and multiple channels
 - Predicted plasma response to imposed fields, compared to meas.
 - Predicted ELM structure and onset conditions compared to multiple high resolution measurements

GA Theory and Computational Science Division Developing Predictive Capability for DIII-D, ITER and Beyond

- Validated simulation and theory used to develop predictive models and develop scientific understanding eg.
 - TGLF + NEO: particle, heat and momentum transport
 - EPED: structure of H-Mode pedestal, used to discover new Super H-Mode regime
 - Disruptions and runaway electrons
 - RMP ELM control and QH-mode

Models extensively tested in numerous expts. Combining these models (via OMFIT and AToM SciDAC Project) allows performance prediction and optimization for DIII-D, ITER...

> Strong partnership between GA Theory and DIII-D Program

DIII-D Mission: to Establish the Scientific Basis for the Optimization of the Tokamak Approach to Fusion Energy Production

Selected Highlights of Recent DIII-D Results

- Addressing critical issues for ITER design and operation
- Development of steady-state scenarios for ITER and Demo
- Progress in detached radiative divertor solutions

Proposed Upgrades to DIII-D

As presented to the FESAC
 Strategic Planning Panel

Electron Drag (Avalanche Theory) Is Insufficient to Explain Measured Current Damping Rate

IERAL ATOMICS

Error Field Correction of ITER Test Blanket Module (TBM) Enable Low Torque, High β Operation

- Low Torque: Error Field Correction (EFC) avoids locked mode and disruption
- High β_N : Over 60% reduction of TBM magnetic perturbation with optimal EFC
 - Fast ion losses reduced
 - First wall heat load reduced 80%

N=1 EFC necessary to access ITER equivalent regime

Experiments Suggest Resonant Field Penetration Is Key to RMP-ELM Suppression

- Continuously vary n=2 field structure from kink to pitch resonant
- ELM suppression accompanied by signatures of resonant field penetration
 - $-\omega_{e|} \rightarrow 0$ at pedestal top
 - Pedestal width narrows
 - Flattens pedestal temperature
 - Non-linear HFS magnetic response of pitch resonant field
 - Validates 2-fluid MHD predictions of island formation & overlap (M3D-C1)
 - Kink response ELM Mitigation
 - Pitch resonant ELM suppression
- Resonant field penetration also predicted in ITER

High Bootstrap Fully Non-inductive Scenario Developed for Long Pulse Operation

Reduced torque and current ramp rate to match EAST

- Sustained for two current redistribution times
- ρ=0.7 transport barrier gives good normalized confinement
 - H₈₉>2, 80% bootstrap
 - Fast ions well confined

Joint initiative with EAST

Fully non-inductive target for EAST

Hybrid: 100% non-inductive, 1 MA 50% bootstrap, β_N = 3.6, H_{98y} = 1.6

T. S. Taylor/FPA/Dec, 2014

Measured Temperature Data Show Sharp Transition to Detachment and Radiation Shortfall in Simulations

- Sharp drop in T_e vs n_e^{sep} to T_e < 1eV at detachment
 - Molecular processes important
- Detachment simulations reveal "radiation shortfall" in models
 - Models match attached data
 - Potential issue with one of the radiation models at low T_e

New DIII-D Boundary/PMI Center Recently Created to Coordinate/Stimulate Increased Effort in This Critical Area

Advance scientific understanding and develop predictive capability

→ Deliver physics basis for robust heat flux and erosion control.

- Develop and test
 advanced divertor solutions
 in high performance
 plasmas relevant for FNSF
 Improve divertor solution
 through innovation.
- Evaluate reactor relevant materials at high temperatures

➔ Provide data to broad materials community in fusion environment.

Proposed DIII-D Upgrades to Develop the Scientific Basis for the Burning Plasma Era and Fusion Energy Development

International Collaboration: Accelerates Progress in Fusion and an Important Part of DIII-D/GA Fusion Effort

Remote Participation Capability

- \rightarrow increases efficiency, effectiveness
- \rightarrow reduces cost

Fast data transfer from EAST experiment to GA demonstrated – Increased by 300x

Examples: EAST and ASDEX-U

1st EAST/DIII-D Joint Experiment Planning Workshop held at ASIPP →prototype experiments on DIII-D

Landau Spitzer Award: ASDEX-U/DIII-D Collaborative effort on energetic particles

