A Next Step Burning Plasma Experiment

The Litmus Test for Fusion Science

Dale M. Meade Princeton Plasma Physics Laboratory

Fusion Power Associates Annual Meeting and Symposium University of California, San Diego, CA.

July 17, 2000

http://fire.pppl.gov

The Advanced Tokamak ARIES-AT could be Competitive with other Future Energy Sources

EPRI Electric Supply Roadmap (1/99):

Business as usual

Impact of \$100/ton Carbon Tax.

Estimates from Energy Information Agency Annual Energy Outlook 1999 (No Carbon tax).

* Data from Snowmass Energy Working Group Summary.

Paths to Develop the Science for Attractive Fusion Energy

Issues - Strongly Coupled in a Fusion (Burning) Plasma

The Modular (Multi-Machine) Strategy

Stepping Stones for Resolving the Critical Fusion Plasma Science Issues for an Attractive MFE Reactor

Advanced Toroidal Physics

The "Old Paradigm" required three separate devices, the "New Paradigm" could utilize one facility operating in three modes or phases.

Fusion Ignition Research Experiment (FIRE)

Design Goals

- R = 2.0 m, a = 0.525 m
- B = 10 T, (12T)*
- W_{mag} = 3.8 GJ, (5.5 GJ)*
- $I_p = 6.5 \text{ MA}, (7.7 \text{ MA})^*$
- $P_{alpha} > P_{aux}$, $P_{fusion} \sim 220 \text{ MW}$
- Q ~ 10, $\tau_{\rm E}$ ~ 0.55s
- Burn Time ~ 20s (12s)*
- Tokamak Cost ≤ \$0.3B
 Base Project Cost ≤ \$1B

* Higher Field Option

Attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive MFE systems.

Laboratories are Needed to Explore, Explain and Expand the Frontiers of Science

SNS

CHANDRA

HST (NGST)

NIF

NSO

CHANDRA

VLBA