Fusion Power Associates 35th Annual Meeting Fusion Energy: Recent Progress and

60SAの欧州製作種基の初載入と 組立開始を除席する式曲

At Hyatt Regency Washington DC on Cap

080

te vage ette tusion Program In vage of the tusion Program

Alaka Fision his hille

JAEA) Japan Atomic Zaeay Adenie

Sector of Them. R. 292

Magnetic Fusion R&D Program

2

1 ITER Project - In-Kind Procurement Activities -

Japanese Contribution in ITER In-Kind Procurement Now Achieved 88% in Contracted Credit!

JT-60SA Project

JT-60SA (JT-60 Super Advanced) Project

Mission -support ITER: using break-even-equivalent class hightemperature deuterium plasmas lasting for a duration (typically 100 s) for optimization of ITER operation scenarios. -supplement ITER toward DEMO: with long sustainment (100 s) of high pressure plasmas necessary in DEMO for establishment of DEMO operation scenarios.

24 PA's have been completed: 87% of the total. The First Plasma is now planned in March 2019.

JT-60SA Target Plasma Design

JT-60SA: highly shaped $(S=q_{95}I_p/(aB_t) ~7, A~2.5)$ large superconducting tokamak confining deuterium plasmas (lp-max=5.5 MA) lasting for a duration (typically 100s) longer than the timescales characterizing the key plasma processes such as current diffusion time, with high heating power 41MW.

Utilizing the ITER- and DEMO-relevant plasma regimes and DEMO-equivalent plasma shapes, JT-60SA contributes to all the main issues of ITER and DEMO.

	#2 Full lp 41MW	#4-1 ITER-like Shape 34MW	#4-2 Advanced inductive 37MW	#5-1 High βN Full CD 37MW
I _P (MA)	5.5	4.6	3.5	2.3
B _τ (T)	2.25	2.28	2.28	1.72
R _p (m)	2.96	2.93	2.93	2.97
Α	2.5	2.6	2.6	2.7
к95	1.72	1.7	1.72	1.83
895	0.4	0.33	0.34	0.42
q95	3.0	3.2	4.4	5.8
Pin (MW)	41	34	37	37
β _N	3.1	2.8	3.0	4.3
fBS	0.28	0,3	0.4	0.68

7

Status of JT-60SA Construction

JT-60SA Torus Assembly was started: Temporary installation of EF4,5 & 6 on CB: ⇒Assembly Frame was set up. ⇒VV assembly was started in May 2014. Cryostat Base Lower 3 EF Coils

Vacuum Vessel ->

All sectors (40deg. X 7 + 30deg. X 2 + 20deg.) have been completed. on site.

40-deg. VV sectors will be assembled up to 340-deg. ready for the TFC installation.

The third and fourth sectors on CB

The joint-welding of the first two 40-deg. VV sectors was started in July 2014, and will continue until the end of Sep. 2015 to form the 340-deg. VV torus.

The final 20-deg. sector will be set at the right position with the last TFC.

Now, seven 40-deg. sectors (= 280 deg.) have been placed on the cryostat base.

Joint-welding by the robot

EU Procurements for JT-60SA devices are smoothly conducted and delivered to Naka on schedule.

TF coils & their related components manufacture

are running well in France and Italy.

TF (Toroidal Field) Coil Winding started

(CEA, ENEA) **Manufacture of** structural

components are also going well. Casings

Gravity supports

JT-60SA: Manufacture on schedule in both EU and JA

JT-60SA is a flexible 'Test Stand' for ITER

Examples of Test Items in Physics

(a) H-mode operations towards Q=10 (H, He, D)

L-H transition, Pedestal Structure H-mode confinement (incl. compatibility with radiative divertor, RMP, etc.) Local Ripple & TBM Test

- (b) ELM mitigation (RMP, pellet, ...)
- (c) Disruption avoidance & mitigation (Intensive Gas, impurity pellet)
- (d) Divertor heat load reduction
- (e) Integrated operation scenario optimization with SC PF coils. (operation scenarios, plasma actuators, diagnostics ...)

(f) High energy particle physics using 10MW 500keV N-NB NB Current Drive studies (incl. off-axis NBCD), AE mode stability & effects on fast-ion transport, Interactions between high energy ions and MHD instabilities

→ JT-60SA Research Plan updated to Ver.3.1 (Dec. 2013)

- Stabilizing Wall
- Fast Plasma Position Control coil
- Error Field Correction (EFC) coil
- RWM Control coil: 18 coils. on the plasma side. + ECCD (NTM), rotation control

RWM control

 $\beta_N = 4.1$ (C_{β} =0.8) with effects of conductor sheath, noise (2G), and latency (150 ms).

JT-60SA Research Plan by EU and JA

"Research items and Strategy for JT-60SA" to solve critical issues in ITER and DEMO.

JT-60SA Research Plan updated to Ver.3.1 in 2013, Dec.

Co-authors: 331 persons

Japan: 150 (76 from JAEA, 74 from 15 Univ.) EU: 176 (10 countries, 24 institutes) Project Team: 5

=> Objectives: Encourage collaborative studies, and Optimize hardware. (Revised towards the first plasma)

Expected experiment participants: JA: 250-300, EU: 200-250

3rd. Research Coordination Meeting (Naka, May.,2014)

JT-60SA Research Plan: http://www.jt60sa.org/b/index_nav_3.htm?n3/operation.htm

IFMIF/EVEDA Project

IFMIF/EVEDA (Engineering Validation and Engineering Design **Activity of International Fusion Material Irradiation Facility)**

IFMIF

LEBT: Low Energy Beam Transport line RFQ: Radio Frequency Quadrupole MEBT: Medium Energy Beam Transport

SRF Linac: Superconducting Radio Frequency LINAC HEBT: High Energy Beam Transport lines

→ IFMIF/EVEDA project will be presented by Dr. Okumura.

Status of IFMIF/EVEDA

Installation of Injector for the Linear IFMIF Prototype Accelerator (LIPAc) was completed. Beam tests have been initiated by JAEA, CEA and IFMIF/EVEDA Project Team.

Installation of the Injector in the Accelerator Vault

LIPAc injector 1st beam was achieved on Nov. 4, 2014

4 International Fusion Energy Research Center (IFERC) Project

IFERC Project International Fusion Energy Research Center

DEMO Design

Joint work to design feasible DEMO concepts →revisit later

Computer Simulation Center

Large-scale simulation for magnetic confinement fusion

-Linpack performance: 1.23 Pflops (as of June 2014, world 30th fastest)

-Maintain extremely high availability (> 98%) and running rate (> 85 %)

-Highly contributed to research: 275 publications and 847 presentations

Remarkable progress seen in each activity with efficient joint work of EU and JA 20

Large Helical Device (LHD) Project

Large Helical Device (LHD) Project

• The world-largest helical system, and the world-largest SC fusion machine at present.

 Intrinsic advantage and engineering capability of steady-state operation

- Complementary/alternative role to tokamak approach The goal of the project
- Establish scientific basement for a helical fusion reactor
- Comprehend physics of toroidal plasmas

- View of Outer diameter 13.5 m
 - Cold mass
 - Total weight 1500 ton
 - Magnetic field 3 T
- 820 ton

Heating capability NBI 28 MW MW ECH 4.6 ICH 3.5 MW

- Magnetic energy 0.77 GJ
- Operation for 16 years since 1998 → Engineering Base
- Several-month-long operation, 17 times since 1998
- Operational time of He compressor: 76,400 hours → Duty > 99 %
- Coil excitation number 1,580 times
- Plasma discharges: 125,000 shots (Plasma pulse every 3 min)

A large number of opportunities for diversified collaboration on physics.

Achieved plasma parameters encourage the further next step.

Parameter	Achieved	Target	
Ŧ	8.1 keV	10 keV	
∎ i0	(1x10 ¹⁹ m ⁻³)	(2x10 ¹⁹ m ⁻³)	
Ŧ	13 keV	10 keV	
e0	(1x10 ¹⁹ m ⁻³)	(2x10 ¹⁹ m ⁻³)	
	1.2x10 ²¹ m ⁻³	4x10 ²⁰ m ⁻³	
le0	(0.26 keV)	(1.3 keV)	
0	5.1 % (0.425 T)	5 % (1-2 T)	
β	3.7 % (1 T)		
Discharge	54 min (500 kW)	1 hour	
duration	48 min. (1,200 kW)	(3,000 kW)	

Red: achieved in FY2013

Schedule for LHD deuterium experiment (tentative)

- Concluding the Agreements for the LHD deuterium experiment with local government bodies on March 28, 2013.
- Deuterium experiment will start in 2016, and during the planned 9years' experiments, 10keV of the T_i should be achieved.

DEMO Design Activities in Japan

Fusion Community for DEMO Design in Japan

The Joint Core Team Submitted a Special Report in July 2014

Report by the Joint-Core Team

for the Establishment of Technology Bases

Required for the Development of a Demonstration Fusion Reactor

18 July 2014 [in Japanese] English version will be released in Jan. 2015

1. Introduction

2. On the Concept of DEMO Premised for Investigation

- 2-1. Change of Energy Situation and Social Requirement
- 2-2. Fundamental Strategy
- 2-3. Development Strategy
- 2-4. Basic Concept Required for DEMO
- 2-5. Points of View for Changeover to DEMO Phase and Assessment of Transition Conditions

3. Technological Issues of Elements of DEMO

- 3-1. Superconducting Coils 3-2. Blanket
- 3-3. Divertor 3-4. Heating and Current Drive Systems
- 3-5. Theory and Numerical Simulation Research
- 3-6. Reactor Plasma Research 3-7. Fuel Systems
- 3-8. Material Development and Standards / Criteria
- 3-9. Safety of DEMO Reactor and Safety Research
- 3-10. Availability and Maintainability 3-11. Diagnostics and Control Systems
- 3-12. Newly Required Facilities and Platforms
- 4. Points of Reactor Design Activity
- 5. International Cooperation and Collaboration
- 6. Summary Development of Grand Strategy towards Future Establishment of Technological Bases for DEMO -

Organized Framework for Implementation throughout Japan towards Establishment of Technology Bases for DEMO (in plan)

Summary

Toward the earlier realization of a Magnetic Fusion DEMO reactor, ITER Project and BA Activities are intensively being promoted in Japan.

1 In ITER Project: In-kind procurement activities have come to a peak of manufacturing processes at the factory in Japan (TFC, CS, etc.).

In BA Activities

2 JT-60SA Project: Manufacture is running well on schedule by EU & JA:

- VV assembly was started in May 2014.
- Research Plan Ver3.1 was released in 2013 (available on the website)

3 IFMIF/EVEDA Project:

- The injector for the Linear IFMIF Prototype Accelerator was installed.
- The first beam of the injector has achieved in last Nov. 2014.
- The other components are ready for installation.
- 4 IFERC Project (DEMO Design, DEMO R&D, Computer Simulation Center, ITER Remote Experiment Center) is producing many results on each field.

5 The alternative to a tokamak: LHD will start Deuterium experiment in 2016

6 DEMO Design Activities:

- Joint Core Team discussing the grand strategy submitted a Special Report to MEXT, in July 2014. (*English version soon available*)
- General Coordination Group for DEMO CDA will be newly organized soon.

Roadmap towawd Fusion Energy

- The first plasma and Q>10 in ITER will be possibly the trigger points to DEMO EDA and its construction, respectively.
- BA will reach the assumed period in 2019 (JT-60SA), and 2017 (the other projects). Post BA activities are under discussion.
- DEMO is expected to go into operation in a middle of 2040s.

