

United States Burning Plasma Organization

Activities of the US Burning Plasma Organization

Charles M. Greenfield

Director, US Burning Plasma Organization Chief Scientist, US ITER Project Office

Fusion Power Associates 33rd Annual Meeting and Symposium

December 6, 2012

Preparing for "burning plasma era"

U.S. Burning Plasma Organization (USBPO) was created in 2005 as a community-based entity

 Mission: Advance the scientific understanding of burning plasmas and ensure the greatest benefit from burning plasma experiments by coordinating relevant U.S. fusion research with broad community participation

Broad community participation:

- Regular members (363 from 58 institutions)
- Associate members (23 from 18 non-US institutions)
- Council (12 members)
- Research Committee (20) = leaders/deputy leaders of 10 Topical Groups
- Directorate (5)
- International Tokamak Physics Activity (ITPA): 49 Topical Group members
 + 3 Coordinating Committee members from the US

Goals of the USBPO

- Coordinate and advocate US burning plasma (BP) research
- Provide organizational structure to participate in BP program
- Optimize US participation in ITER and address post-ITER issues
 - Promote and coordinate activities on existing experiments, theory & simulation, diagnostics, etc.
 - Identify and develop US areas of interest and excellence in BP science
- Educate and advocate BP science to wider science community
- Coordinate US activities with US ITER Project Office
 - ITER physics R&D
- Facilitate strong interactions with international partners

USBPO Role in ITER Support

US ITER Project Office

- US Domestic Agency for ITER
- Provides hardware & technical contributions

USBPO

- Coordinates US burning plasma research, to advance scientific understanding & ensure greatest benefit from ITER
- USBPO Director is also the
 US ITER Project Office
 Chief Scientist

The USBPO organizes the US Fusion Energy Science community to support burning plasma research

Charles Greenfield (Director)
Amanda Hubbard (Deputy Director)
Nermin Uckan (Asst. Dir. for ITER Liaison)

USBPO Council:
Jon Menard (Chair)
Mark Koepke (Vice Chair)
10 at-large members+
US ITER Chief Technologist

Research Committee made up of leaders and deputies of 10 Topical Groups

MHD & Macroscopic Plasma Physics Integrated Scenarios

Pedestal and Divertor/SOL Operations and Control

Fusion Engineering Science Modeling and Simulation

Diagnostics Confinement and Transport

Plasma-Wave Interactions Energetic Particles

MEMBERS: 363 (regular) 23 (associate)

USBPO membership is open to any fusion researcher who joins one or more topical groups

USBPO-ITPA Integration

- USBPO is national base for US international activities in ITPA
 - Acts as community arm of US ITPA representation
- Coordination role
 - Publicize ITPA meetings
 - Reports back to US community via eNews and web seminars
 - Recommend US members for ITPA topical groups
- But... US ITPA participants have strong ties to individual research programs – broader coordination is not always needed

The USBPO Topical Groups are strongly linked to ITPA Topical Groups and other burning plasma stakeholders

ITPA

Topical Groups

JSBPO Topical Groups and leaders

Energetic Particles

Eric Fredrickson, David Pace

Energetic Particle Physics (EP)

Pedestal and Edge Physics (PED)

Pedestal and Divertor/SOL

Tony Leonard (DSOL), Rajesh Maingi (PEP)

Divertor and Scrape-off Layer (DSOL)

Integrated Scenarios

Stefan Gerhardt, Chris Holcomb

Plasma-Wave Interactions

Gary Taylor, David Green

Operations and Control

Michael Walker, Egemen Kolemen

MHD & Macroscopic Plasma Physics

François Waelbroek, Bob Granetz

Confinement and Transport

George McKee, Gary Staebler

Diagnostics

David Brower, Matt Reinke

Modeling and Simulation

David Mikkelsen (T&C), Xianzhu Tang

Fusion Engineering Science

Larry Baylor, Russ Doerner (DSOL)

Integrated Operational Scenarios (IOS)

ITER and ITPA Working Groups on Plasma Control

MHD, Disruption, and Control (MHD)

Transport and Confinement (T&C)

Diagnostics (DIA)

ITER Working Group on Integrated Modeling

US and International Technology Communities

We are working to increase the role of the USBPO in advancing burning plasma science

- From the USBPO charter: "Task Groups focused on very specific BP issues that cut across the Topical Group boundaries may be formed to carry out work to address those issues"
- During the past year, we have been working to increase the use of task groups, with important selection criteria:
 - The task group must address an important issue for burning plasma science
 - We concentrate on areas where USBPO involvement can make a positive contribution – if the community is already doing a good job addressing something, we don't need a task group
 - Example 1: ELM control has been well covered and we felt it would not benefit from a task group even though it's extremely important
 - Example 2: There was some sentiment in the community that disruption mitigation would benefit from the coordination of a task group

Task Groups have been formed to address issues of special importance to the USBPO membership

- Disruption Task Group (Bob Granetz, John Wesley)
 - Near term: Coordinating US research supporting ITER DMS specification
 - Longer term: Address disruption prediction and avoidance
- Community Outreach (David Pace)
 - Collecting material for presentations outside Fusion Energy Science community: Scientists in other fields, the public,...
- Virtual Forum (Mike Mauel)
 - Completed Provided opportunities for US community input toward prioritization within Fusion Energy Science program
- Modes of collaboration with ITER (Rajesh Maingi, Mike Walker)
 - Starting now Develop a US community vision of how we would like to work with ITER; anticipates later discussions among all ITER parties
- We are seeking further opportunities to contribute
 - Many areas (e.g. ELM control) already have broad community support,
 and we have decided USBPO coordination is not needed

The US Burning Plasma Community is addressing many ITER R&D issues

Some key examples:

- Disruption avoidance and mitigation
 - Focus of new USBPO task group
 - US responsible for providing ITER DMS, which is not specified yet current experiments determining requirements and evaluating different particle delivery methods
- ELM control several techniques demonstrated, working on physics basis
 - Mitigation or suppression via 3D fields (RMP ELM control) or pellet pacing
 - Naturally ELM-free operating scenarios (I-mode, QH-mode,...)
- Divertor and SOL issues at high heat flux, high Z vs C PFCs
- RF H&CD Reduction of impurity generation, validating simulations
- Operating scenario development, especially high gain long-pulse and steady state
 - Also includes preparation for low-activation phase of ITER, e.g. L-H threshold in helium plasmas
- Predictive capabilities
- Plasma control

Not always explicitly coordinated by the USBPO – here I am speaking as a representative of the US Burning Plasma Science community

The US Burning Plasma Community is addressing many ITER R&D issues

Some key examples:

- Disruption avoidance and mitigation
 - Focus of new USBPO task group
 - US responsible for providing ITER DMS, which is not specified yet current experiments determining requirements and evaluating different particle delivery methods
- ELM control several techniques demonstrated, working on physics basis
 - Mitigation or suppression via 3D fields (RMP ELM control) or pellet pacing
 - Naturally ELM-free operating scenarios (I-mode, QH-mode,...)
- Divertor and SOL issues at high heat flux, high Z vs C PFCs
- RF H&CD Reduction of impurity generation, validating simulations
- Operating scenaries to the state of the stat
 - Also includes preparation for low-activation phase of ITER, e.g. L-H threshold in helium plasmas
- Predictive capabilities
- Plasma control

Not always explicitly coordinated by the USBPO – here I am speaking as a representative of the US Burning Plasma Science community

Effective disruption + runaway electron mitigation are essential for ITER

- DMS has 5 critical functions:
 - 1 Limit W_{th} deposit on divertor and first wall surfaces
 - ②Prevent "hot plasma VDEs" and FW energy deposit
 - 3 Limit halo current forces in blanket/shield modules
 - 4 Control eddy current forces in B/S modules
 - 5 Control and dissipate runaway electron currents
- MGI (massive gas injection) identified as primary approach
 - MPI (massive pellet injection) as alternate
- ITER current and energy introduce R&D needs
 - Control thermal and magnetic energy radiation
 - Avoid and mitigate runaway electrons
 - Provide adaptive control, with high reliability and nuclear compatibility

Multiple gas jet experiments in C-Mod address radiation asymmetries during disruptions

 During pre-TQ, P_{rad} asymmetry is controllable with two gas jets

- During TQ, P_{rad} asymmetry is not controllable or reproducible with two gas jets
 - Seems to be more symmetric with "single" jet

R. Granetz

C-Mod

To date, only C-Mod has performed experiments with multiple sources
 Possible theoretical explanation (V. Izzo, APS 2012): MHD instabilities

Tests of candidate ITER RE avoidance and mitigation strategies and technologies are in progress

More research is needed to specify the ITER DMS

- USIPO to provide DMS, but...
- The responsibility for determining what the physics requirements are and how they should be addressed has not been specifically assigned to the US
- Physics and technology R&D, experiments, and modeling are critical for meeting milestones (CDR now, PDR, FDR in 2016,...)
 - Will rely on results from DIII-D, C-Mod, JET, ASDEX-U, Tore Supra, KSTAR, EAST,...
 - Dedicated disruption research may be limited or nonexistent in some of these devices
- USBPO has mobilized a task group to address these issues, led by **Bob Granetz (MIT) and John Wesley (GA)**
 - Kickoff at US Disruption Mitigation Workshop in 2012; second workshop may take place in 2013
 - Joint planning of research in the US and a point of contact with our international partners

US research is developing solutions for ITER's ELM challenge

- DIII-D is developing a physics basis for RMP ELM control
- ELM pellet pacing demonstrated in ITER baseline scenario in DIII-D
- High performance alternative operating scenarios being developed that are naturally ELM free and may be accessible in ITER

Focus of the 2013 FES Joint Research Target

C-Mod: I-mode

DIII-D: QH-mode

Modulated phase RMP experiments point to island at top of pedestal inhibiting pedestal growth and ELMs

RMP phase flips reveal MHD structure

- Helical displacements seen in X-point SXR (difference imaging)
- Compared with vacuum field and two-fluid MHD simulation

Experiment: SXR data

Mechanism: RMP limits width of pedestal

- RMP field resonant near top of pedestal
- Island growth where $\omega_{e,\perp}{\sim}0$
- Island limits inward expansion of high-gradient pedestal

M. Wade, IAEA 2012

Pellet Pacing in ITER Baseline Scenario Yields 12x Higher ELM Frequency

- Reduced ELM energy loss
- Minimal change in confinement
- No fueling increase
- Effective impurity screening

$$f_{pellet} \times q_{div} = const$$

L. Baylor, IAEA 2012

I-mode: Stationary, high energy confinement ELM-free regime *without* an edge particle barrier

 L-mode impurity confinement makes the regime highly compatible with high Z PFCs, and with impurity seeding, as planned on ITER.

C-Mod: 1.1 MA, 5.8T, q_{95} =3.4

Operating range for ELM-free QH-mode extended to ITER relevant torque using external 3D coils

Neutral Beam Torque

 Achieved using external n=3 coils to drive edge rotation shear

QH-mode is an attractive candidate ELM-free scenario for ITER

Excellent energy confinement quality at low rotation: $H_{98v2}=1.3$

USBPO Communication Role

USBPO web site (www.burningplasma.org)

- All presentations, white papers, progress reports are publicly available
- Limited-access areas for US STAC, Council, Topical Groups, ...

USBPO eNews

- 568 subscribers (from 126 institutions)
- Includes "Director's Corner" column, feature articles, ITPA meeting reports, calendar of fusion events, research highlights

IT capabilities

- Regularly scheduled videoconferences (Research Committee, Council,...)
- Technical briefings for US STAC members
- Community web seminars
 - Our most recent seminar had over 70 unique connections (no way to tell how many people at each site)

Communication within and outside the BP community

Web seminars

- Used for ITPA reports and Virtual Forum with very broad participation
- Tuesday evening town meeting during 2012 IAEA FEC
- Events at APS Division of Plasma Physics Meeting
 - Contributed oral session on ITER-related research 2012 is fifth year
 - Usually attracts a full room
 - Evening Town Meeting on ITER (~every other year)
 - Tutorial talk: "The Scientific Challenges of Burning Plasmas" (2007)

Preparing presentation material for outreach

- Task group targeting mainly other scientific communities
- May seek to partner with other similar and complementary efforts, e.g.
 Fusion Communication Committee, APS Distinguished Lecturer program,

. . .

Our mission will continue, but the specifics will evolve

USBPO Mission

Advance the scientific understanding of burning plasmas and ensure the greatest benefit from burning plasma experiments by coordinating relevant U.S. fusion research with broad community participation

- Supporting successful completion of the ITER project (defined as providing a facility that is ready and able to carry out a successful research program) is our highest priority
 - Operational issues (e.g. operating scenarios) will eventually displace design issues (e.g. DMS) as we get closer to the transition to experimental operations
- Fusion Nuclear Science Facility may be a consideration for USBPO in the future
- Roles of the USBPO
 - Use topical groups or form task groups to organize specific tasks
 - Facilitate the flow of information both to each other and outside the community
 - When USBPO involvement won't make things better, stay out of the way (e.g. ELM control and mitigation)
- The US FES community has been enthusiastic and effective in supporting ITER and the transition of our field to burning plasma science in general

Backup material

USBPO Council Members (2012-13)

Council Member	Institution
Jon Menard – Chair	PPPL
Mark Koepke – Vice Chair	West Virginia
Richard Buttery	GA
Troy Carter	PPPL
Jerry Hughes	MIT
Steve Knowlton	Auburn
Cynthia Phillips	PPPL
Tom Rognlien	LLNL
Don Spong	ORNL
Anne White	MIT
Clement Wong	GA
Stan Milora (VLT), Charles Greenfield, Amanda Hubbard, Nermin Uckan, five DOE representatives	Ex officio

USBPO Topical Group Leaders (2012-13) USBPO

Topical Group	Leader	Deputy Leader
Confinement & Transport	George McKee (Wisconsin)	Gary Staebler (GA)
Diagnostics	David Brower (UCLA)	Matt Reinke (MIT)
Energetic Particles	Eric Fredrickson (PPPL)	David Pace (GA)
Fusion Engineering Science	Larry Baylor (ORNL)	Russ Doerner (UCSD)
Integrated Scenarios	Stefan Gerhardt (PPPL)	Chris Holcomb (LLNL)
MHD	François Waelbroeck (Texas)	Bob Granetz (MIT)
Modeling & Simulation	David Mikkelsen (PPPL)	Xianzhu Tang (LANL)
Operations & Control	Michael Walker (GA)	Egemen Kolemen (PPPL)
Pedestal & Divertor/SOL	Tony Leonard (GA)	Rajesh Maingi (ORNL)
Plasma-Wave Interactions	Gary Taylor (PPPL)	David Green (ORNL)

US ITPA Topical Group Coordinators

Topical Group	US Coordinator	US Deputy Coordinator
Diagnostics	Réjean Boivin	David Brower
Divertor & SOL	Bruce Lipschultz	Tony Leonard
Energetic Particles	Eric Fredrickson	David Pace
Integrated Operational Scenarios	Chuck Kessel	Tim Luce [2]
MHD Stability	Ted Strait [1]	Bob Granetz
Pedestal	Rajesh Maingi [2]	C.S. Chang
Transport & Confinement	Stan Kaye	George McKee
******	******	*****
Coordinating Committee	Steve Eckstrand	Randy Wilson Charles Greenfield

[1] Also: Topical Group international leader

[2] Also: Topical Group international deputy leader