KrF Laser Development

Opening Remarks on KrF Laser Development

Many institutions have had programs in e-beam pumped KrF lasers

Los Alamos National Laboratory Livermore National Laboratory Avco Textron Rutherford Appeleton Labs, UK ETL, Ministry of Technology and Industry, Japan Lebedev Institute, Russia

The Naval Research Laboratory is the first to develop routine, high energy, efficient, and repetitive KrF capability

NRL Progress in KrF Laser Development

	2001	2010	IFE
Repetition rate (pulses/second)	.00056	2.5 to 5	5
Predicted Efficiency (%)	1.9	7.1	> 6.0
Durability (continuous shots)	200	90,000	300 M

Most all of these advances have been made through understanding and controlling the relevant physics

Elements of a Krypton Fluoride (KrF) electron beam pumped gas laser

Energy + (Kr+ F_2) \Rightarrow (KrF)* + F \Rightarrow Kr + F_2 + h_V (λ = 248 nm)

Typical e-beam: 500 -700 keV, 100 - 500 kA, 3000 – 12,000 cm²

4

KrF developed with the NRL Electra and Nike Lasers

Electra: (5 Hz) 400-700 J laser light 500 keV/100 kA/100 nsec 30 cm x 100 cm e-beam

Develop technologies for: Rep-Rate, Durability, Efficiency, Cost

Nike: (Single Shot)

3-5 kJ laser light 750 keV, 500 kA, 240 nsec 60 cm x 200 cm e-beam

E-beam physics on full scale diode Laser-target physics

Pulsed Power

Existing "spark gap based" pulsed power system: Limited to 50,000 – 100,000 shots continuous

Solid State system should be durable and efficient Concept for Electra, scalable to IFE size system Basic elements tested to > 300 M shots

4.0E+03

2.0E+03

0.0E+00

-2.0E+03

1.6E-06

iode Flat-top Energy = 7.7kJ

1.4E-06

1.5E-06

2 0E+10

1.0E+10

0.0E+00

-1.0E+1

9.0E-07

1.0E-06

1.1E-06

Predict Efficiency > 82% (Wall plug to flat top pulsed power)

PLEX, LLC

All Solid State Pulsed Power demonstrator Continuous run: 11.5 M shots @ 10 Hz (319 hrs)

Electron Beam -- Generation and Transport

ELECTRON BEAM GENERATION

Need cold cathodes: simplicity, efficiency, durability Best so far: Carbon Fibers pyrolized to aluminum

- Robust (> 250,000 shots)
- Low cost (\$15 k Electra)
- Easy to make to patterned cathodes

11

ELECTRON BEAM TRANSPORT

Two innovations gave high hibachi transmission:

- 1. Eliminate anode foil
- 2. Pattern the beam to "miss" the ribs

Simulations and experiments show iron bars can efficiently guide electron beam past the hibachi ribs

3-D LSP Simulations (Voss Scientific/Albuquerque)

- Prescribe the emitter topology
- Predict observed electron beam deposition into the gas

Efficiency = Energy deposited in laser gas/energy flat portion of e- beam

Deposition Efficiency Efficiency = Energy deposited in laser gas/energy flat top portion of beam)					
E-beam Voltage	500 keV	500 keV	800 keV		
Pressure Foil	2 mil (Ti)	1 mil (Ti)	1 mil (SS)		
Experiments	67%	75%	N/A		
Simulation	66%	76%	> 81%*		

*1-D modeling for 800 keV full size IFE system

Hibachi Foil: Cooling and Durability

FOIL COOLING

Needed to avoid metal fatigue (470 °C for SS 304) and minimize unwanted chemistry

Two previous concepts we evaluated:

"V" plate Foil Temp = 220 °C @ 2.5 Hz Predict 440 °C @ 5 Hz. (A bit warm)

"Mist Cooling" Foil Temp < 140 °C @ 5Hz

"Jet" cooling technique developed by Georgia Tech: Effective, efficient, and scalable to large apertures

Jets cool foil while maintaining laser quality with minimal power consumption

Georgia Institute of Technology & Matt Wolford

FOIL DURABILITY One key: Control late time *voltage* in e - beam diode.

Increasing diode impedance 10%, lowering charge voltage 15%: Eliminates voltage reversal, and hence damaging foil emission

Electra now capable of ~100 k shot runs

90,000 laser shots (10 hrs) continuous @ 2.5 Hz 150,000 laser shots on same foils @ 2.5 Hz 50,000 laser shots on same foils @ 5 Hz 300,000 laser shots in 8 days of operation

Electra Cell after 30,000 shot continuous laser run

A video starring Electra

KrF Physics: Simulations and Modeling

<u>KrF PHYSICS</u>

"Orestes" Code includes all relevant phenomena

1-D & 2-D Electron DepositionPlasma Chemistry3-D Laser Transport3-D Amplified Spontaneous Emission24 species, 146 reactions, 53 vibrational states

absorption, $\sigma = \sigma_{F2}\eta_{F2} + \sigma_{F_-}\eta_{F_-} + \sigma_{KrF2}\eta_{KrF2} + \sigma_{ArF2}\eta_{ArF2}$

Orestes accurately predicts Electra Main Amplifier Laser Pulse

Orestes predicts performance of many KrF Lasers operating over a wide range of parameters

[Suda, et.al., Appl.Phys. Lett., **51**, 218 (1987)].

[McGeoch, et.al., Fusion Tech., **32**, 610 (1997)].

[Zvorykin, et.al., Final Report, Lebedev Institute (2002)]. 25

Electra: ~ 10% intrinsic efficiency as oscillator expect ~ 12 % as an amplifier

Based on our research, an IFE-sized KrF system should have a wall plug efficiency > 7%

Pulsed Power (wall plug- flat top e-beam)	All solid state	82%
Hibachi (e-beam in diode into gas)	No Anode, Pattern Beam	81%
KrF (e-beam to laser)	Electra Experiments (literature ~ 14%)	12%
Optics to target	Estimate	95%
Ancillaries	Pumps, recirculator	95%
Total		7.1%

For fusion energy want η G > 10. with KrF and advanced targets: η G = 7.1% x 300 ~ 21

18 kJ, 5 Hz, KrF laser amplifier: Extrapolate Nike, using Electra Technologies

Summary of Achievements.

- Durable, efficient, all solid state pulsed power
- Generation, transport, efficient deposition of electron beam
- Jet foil cooling
- Should meet efficiency, based on experiments
- Meets pulse shaping, zooming, uniformity requirements
- Orestes KrF physics code to design future systems

SHORT TERM

- Windows (now quartz):
 - Exploring degradation mechanisms
 - Can use Calcium Fluoride, as in commercial units
- Foils:
 - Improve pulsed power durability
 - Mitigate all late time voltage

LONG TERM

• Long term integrated demonstration at IFE class size