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LLE is the leader for direct-drive laser-based  
inertial fusion energy (IFE) concepts

•	 Direct-drive	based	IFE	concepts	provide	a	complementary	path	 
to IFE relative to indirect-drive—with the potential of higher gains

•	 The	Omega	Laser	Facility	is	being	used	to	develop	direct-drive	IFE	
concepts —hot spot and shock ignition

•	 Hot-spot	cryogenic	implosions	have	achieved	performance	comparable	 
to magnetic fusion

•	 Polar	drive	was	conceived	to	allow	direct-drive	concepts	to	be	tested	on	
the NIF without reconfiguration of the beam disposition—current designs 
predict gains of ~30

•	 Polar	drive	could	demonstrate	ignition	on	the	NIF	before	2020

•	 LLE	expertise	will	be	used	to	develop	technologies	for	glass	 
laser-driven IFE – e.g. “lab-on-a-chip” target manufacture

•	 LLE	and	LLNL	have	partnered	to	develop	the	glass	laser	IFE	concept

Summary

The solid-state laser concept shows great promise for IFE.
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Laboratory for Laser Energetics

•	 Faculty	equivalent	staff:	96
•	 Professional	staff:	178
•	 Associated	faculty:	26
•	 Contract	professionals:	12
•	 Graduate	and	undergraduate		
	 students:	127

Total	square	footage:
310,000 ft2
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•	 The	OMEGA	Users’	Group
– founded in 2008 to facilitate communication among the users,  

the Omega facility, and the broader scientific community 
–	 2nd	annual	OMEGA	Laser	Facility	Users	Group	Workshop— 

held 29–30 April 2010
– 190 members

OMEGA	Laser	System
•	 Operating	at	LLE	since	1995
•	 Up	to	1500	shots/year
•	 Fully	instrumented
•	 60	beams
•	 >30-kJ UV on target
•	 1%	to	2%	irradiation	nonuniformity
•	 Flexible	pulse	shaping
•	 Short	shot	cycle	(1 h)

OMEGA	EP	Laser	System
•	 Construction	complete	25	April	2008
•	 Adds	four	NIF-like	beamlines;	 

6.5-kJ	UV	(10 ns)
•	 Two	beams	can	be	 

high-energy petawatt
 – 2.6-kJ IR in 10 ps
	 –	 Can	propagate	to	the	OMEGA	 

	 or	OMEGA	EP	target	chamber. 

LLE	operates	two	of	the	world’s	largest	lasers 
for high-energy-density physics research



•	 Deuterium	implosion	experiments	on	ignition-scale	targets	 
began in 2001

  – three-day fill, cool, and layer cycle

  – four cryogenic targets per week

  – imploded >200 D2 targets

•	 Deuterium–tritium	implosion	experiments	began	in	2006

  – targets are filled by permeation (no fill tube);	requires	9000	Ci	T2

	 	 –	 safe	operation:	facility	emissions	<1.5	Ci/yr

  – imploded ~100 cryogenic DT targets (D:T,	45:55)

T2364j

LLE routinely fields smooth cryogenic capsules

Improvements	in	the	ice-layer	quality	and	target	position
have	proceeded	in	parallel	with	implosion	experiments.
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The symmetric direct-drive NIF ignition design 
has a 1-D gain of ~50
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Multiple-picket pulse shapes are being used to drive 
ignition-scaled	cryogenic-DT	implosions	on	OMEGA	

Picket energies and relative 
timing	are	adjusted	to	optimize	

the shock coalescence

Current drive pulse used to 
implode cryogenic-DT targets

Shadowgraph of a stalk-
mounted cryogenic-DT capsule
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The measured areal density in triple-picket cryogenic 
implosions	is	larger	than	88%	of	the	1-D	predicted	value1

The areal-density measurements confirm accuracy of shock
tuning and shell stability to short-wavelength perturbations.

1V.	N.	Goncharov	et al., Phys. Rev. Lett., 104,	165001	(2010).
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The product Px can be related to the measurable 
parameters tR, T, and neutron yield

•	 Measure	tR (magnetic recoil spectrometer)

•	 Measure	T (neutron time of flight)

•	 Measure	neutron	yield	(scintillators)

•	 Compute	1-D	neutron	yield	(1-D code)
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P. Y. Chang et al., Phys. Rev. Lett. 104,	135002	(2010).
R. Betti et al., Phys. Plasmas 17,	058102	(2010).
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OMEGA	cryogenic	implosions	have	achieved	 
a Lawson criterion, Px > 1 atm-s

•	On	OMEGA,	ignition-equivalent	
performance	requires

  – GTH ~	3.4	keV	

  – Px ~ 2.6 atm-s

•	Cryogenic	implosions	to	date

  – tR = 0.3 g/cm2, GTH = 2 keV

  – YOC =	5%	~	10%	give	

  – Px $ 1 atm-s, | = 0.08

•	For	comparison,	the	Joint	 
European Tokamak has produced

  – Px ~ 1 atm-s
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Advanced ICF concepts such as shock ignition (SI) 
or fast ignition (FI) provide alternatives for laser IFE
FSC

R. L. McCrory et al., Phys. Plasmas 15,	055503	(2008).
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Advanced ignition concepts separate compression (tR) 
and heating (Ti)—two-step ignition

•	 In	the	current	hot-spot	ignition,	the	driver	provides	 
both compression (tR) and heating (Ti)

•	 Both	shock	ignition	and	fast	ignition	use	a	second	drive	 
to provide heating (Ti)

•	 Not	as	developed	as	conventional	ICF

Two-step ignition offers lower driver energies  
with the possibility of higher gain.

R. L. McCrory, Phys. Plasmas 15,	055503	(2008).
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If successful, shock and fast ignition will open the path 
to high gain ICF (gain ~	150) for ~1-MJ IFE laser drivers

L. J. Perkins et al., Phys. Rev. Lett. 
103,	045004 (2009).

R. Betti et al., Phys. Plasmas 
13, 100703 (2006).
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LLE’s IFE-related efforts and path forward follow 

• Status of Directly Driven ICF – S. Skupsky

• Technology for Polar-Drive Ignition on the NIF – J. Zuegel

• Technologies for Mass Producing IFE Targets – J. Zuegel

• IFE Path Forward – R. L. McCrory




