Laser-Driven Inertial Fusion Energy; Direct-Drive Targets Overview

R. L. McCrory Professor of Physics and Astronomy Professor of Mechanical Engineering Director and Vice Provost University of Rochester Laboratory for Laser Energetics

NAS/NAE Committee on the Prospects for IFE Systems San Ramon, CA 29 January 2011

Summary

LLE is the leader for direct-drive laser-based inertial fusion energy (IFE) concepts

- Direct-drive based IFE concepts provide a complementary path to IFE relative to indirect-drive—with the potential of higher gains
- The Omega Laser Facility is being used to develop direct-drive IFE concepts—hot spot and shock ignition
- Hot-spot cryogenic implosions have achieved performance comparable to magnetic fusion
- Polar drive was conceived to allow direct-drive concepts to be tested on the NIF without reconfiguration of the beam disposition—current designs predict gains of ~30
- Polar drive could demonstrate ignition on the NIF before 2020
- LLE expertise will be used to develop technologies for glass laser-driven IFE e.g. "lab-on-a-chip" target manufacture
- LLE and LLNL have partnered to develop the glass laser IFE concept

The solid-state laser concept shows great promise for IFE.

Laboratory for Laser Energetics

Total square footage: 310,000 ft²

- Faculty equivalent staff: 96
- Professional staff: 178
- Associated faculty: 26
- Contract professionals: 12
- Graduate and undergraduate students: 127

LLE operates two of the world's largest lasers for high-energy-density physics research

- The OMEGA Users' Group
 - founded in 2008 to facilitate communication among the users, the Omega facility, and the broader scientific community
 - 2nd annual OMEGA Laser Facility Users Group Workshop held 29–30 April 2010
 - 190 members

LLE routinely fields smooth cryogenic capsules

- Deuterium implosion experiments on ignition-scale targets began in 2001
 - three-day fill, cool, and layer cycle
 - four cryogenic targets per week
 - imploded >200 D₂ targets
- Deuterium-tritium implosion experiments began in 2006
 - targets are filled by permeation (no fill tube); requires 9000 Ci T₂

UR 🔌

Shroud retractor

Moving cryostat

transfer cart (MCTC)

- safe operation: facility emissions <1.5 Ci/yr
- imploded ~100 cryogenic DT targets (D:T, 45:55)

Improvements in the ice-layer quality and target position have proceeded in parallel with implosion experiments.

The symmetric direct-drive NIF ignition design has a 1-D gain of ~50

Multiple-picket pulse shapes are being used to drive ignition-scaled cryogenic-DT implosions on OMEGA

UR

The measured areal density in triple-picket cryogenic implosions is larger than 88% of the 1-D predicted value¹

The product $P\tau$ can be related to the measurable parameters ρR , *T*, and neutron yield

$$P \tau (atm \cdot s) \approx 8 \left(\rho R_g / cm^2 T_{keV} \right)^{0.8} YOC^{0.4}$$

 $YOC = \frac{measured neutron yield}{1-D predicted neutron yield}$

- Measure ρR (magnetic recoil spectrometer)
- Measure *T* (neutron time of flight)
- Measure neutron yield (scintillators)
- Compute 1-D neutron yield (1-D code)

$$\chi = \left(\rho R_{g/cm^{2}}\right)^{0.8} \left(\frac{T_{keV}}{4.7}\right)^{1.6} \text{YOC}^{0.4}$$
 $\chi > 1$
 Required for ignition

P.Y. Chang *et al.*, Phys. Rev. Lett. <u>104</u>, 135002 (2010). R. Betti *et al.*, Phys. Plasmas <u>17</u>, 058102 (2010).

OMEGA cryogenic implosions have achieved a Lawson criterion, $P\tau > 1$ atm-s

- On OMEGA, ignition-equivalent performance requires
 - $\langle \mathbf{T} \rangle \sim$ 3.4 keV
 - $P\tau$ ~ 2.6 atm-s
- Cryogenic implosions to date
 - hoR = 0.3 g/cm², \langle Tangle = 2 keV
 - YOC = 5% \sim 10% give
 - $P au \ge$ 1 atm-s, χ = 0.08
- For comparison, the Joint European Tokamak has produced

$$- P\tau \sim 1 \text{ atm-s}$$

Advanced ICF concepts such as shock ignition (SI) or fast ignition (FI) provide alternatives for laser IFE

R. L. McCrory et al., Phys. Plasmas 15, 055503 (2008).

Advanced ignition concepts separate compression (ρR) and heating (T_i)—two-step ignition

- In the current hot-spot ignition, the driver provides both compression (ρR) and heating (T_i)
- Both shock ignition and fast ignition use a second drive to provide heating (*T_j*)
- Not as developed as conventional ICF

If successful, shock and fast ignition will open the path to high gain ICF (gain ~ 150) for ~1-MJ IFE laser drivers

L. J. Perkins et al., Phys. Rev. Lett. <u>103</u>, 045004 (2009).

R. Betti *et al.*, Phys. Plasmas <u>13</u>, 100703 (2006).

LLE's IFE-related efforts and path forward follow

UR 🔌

- Status of Directly Driven ICF S. Skupsky
- Technology for Polar-Drive Ignition on the NIF J. Zuegel
- Technologies for Mass Producing IFE Targets J. Zuegel
- IFE Path Forward R. L. McCrory

