Technology for Polar-Drive Ignition on the NIF

J. D. Zuegel University of Rochester Laboratory for Laser Energetics

ROCHESTER

NAS/NAE Committee on the Prospects for IFE Systems San Ramon, CA 29 January 2011

Summary

Polar-drive ignition could be tested on the NIF with a few modest modifications to the facility

 Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the required beam smoothing with simple modifications to the NIF facility

- Beam smoothing is only required at the beginning of the laser pulse, which minimizes stress on the laser
- Polar-drive phase plate and polarization-smoothing designs are underway
- A NIF PD beam-smoothing demonstration on OMEGA EP is planned in FY12
- Direct-drive target technology:
 - NIF-scale fill-tube targets have been demonstrated and are being optimized
 - Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC) are being developed

Implementing polar drive (PD) requires five changes on the NIF for an ignition demonstration

Laser nonuniformity imprint is minimized by optimizing smoothing by spectral dispersion (SSD)

- SSD divergence ($\Delta \theta_{SSD}$) determines the asymptotic uniformity
- Increasing the inverse coherence time (t_c^{-1}) allows the target to experience a smoother spot for a longer period

MultiFM 1-D SSD provides required beam smoothing performance with minimal impact on the facility

LLE

- Traditional SSD systems using single-frequency phase modulation have low smoothing rates for many important spatial modes (ℓ < 150)
- MultiFM 1-D SSD is a new approach that
 - provides better smoothing rates with lower total bandwidth (esp. for PD pulse shapes with picket prepulses)
 - can be implemented on NIF with simple modifications

An optimized MultiFM configuration that achieves high gain in polar drive simulations has been identified

- MultiFM 1-D SSD employs technology developed for the telecommunications industry
 - 40-GHz phase modulators and drive electronics
 - UV bandwidth: $\Delta f_{total} = 500 \text{ GHz}$ (effective bandwidth)
 - SSD divergence: $\Delta \theta_{SSD} = 100 \ \mu rad$ (half angle at full beam)
- DRACO 2-D simulations with all nonuniformity sources: Gain = 32

Dynamic Bandwidth Reduction (DBWR) minimizes stress on the laser with little affect on target gain

LLE

MultiFM 1-D SSD beam smoothing only needs to be applied to pickets in the polar-drive point design pulse shape.

A MultiFM 1-D SSD beam-smoothing demonstration on OMEGA EP will validate laser imprint performance

ROCHESTER

The focal-spot conditioning strategy for polar-drive ignition includes phase and polarization plates

The NIF final optics assembly (FOA) will include:

- Phase plate between the frequency conversion crystals (2 ω)
- Polarization plate (3ω)

Phase plates and polarization smoothing are being designed to efficiently and uniformly couple energy to polar-drive targets

Phase plates efficiently deliver laser energy with a desired focal pattern to achieve required irradiation uniformity.

 Polarization smoothing instantaneously improves targeted modes of focal-spot irradiance modulation.

A NIF fill-tube target has been demonstrated that will be optimized to meet polar-drive ice layer specifications

Target: 2.95-mm OD, 20- μ m wall Fill tube: 30- μ m OD at shell wall

Cryogenic layering sphere

Facility renovations and equipment upgrades are underway at LLE to demonstrate NIF PD cryogenic layering with DT targets.

A polar-drive ignition target insertion cryostat (PD-ITIC) will minimize the impact on the NIF facility

Target Alignment System (TAS)

Load, Layer, and Characterization Station (LLCS)

- A polar-drive target that survives >3-s exposure to the target chamber is required to use existing "clam-shell" shroud design
- Use existing NIF space envelope and cryogenic support systems (TAS, LLCS, TARPOS)

Existing TAS and LLCS place challenging constraints on a PD-ITIC design that will limit size of the cryogenic shroud.

Summary/Conclusions

Polar-drive ignition could be tested on the NIF with a few modest modifications to the facility

- Beam-smoothing improvements:
 - Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the required beam smoothing with simple modifications to the NIF facility

- Beam smoothing is only required at the beginning of the laser pulse, which minimizes stress on the laser
- Polar-drive phase plate and polarization-smoothing designs are underway
- A NIF PD beam-smoothing demonstration on OMEGA EP is planned in FY12
- Direct-drive target technology:
 - NIF-scale fill-tube targets have been demonstrated and are being optimized
 - Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC) are being developed

