

LIFE Economics and Delivery Pathway

Presentation to

National Research Council's review on "Prospects for Inertial Confinement Fusion Energy Systems"

January 29, 2011

Tom Anklam

Lawrence Livermore National Laboratory • Laser Inertial Fusion Energy

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

The Gain Story

Plant Gain =
$$\eta_L G_F G_B \eta_T = \frac{P_{Gross}}{P_{Recirc}}$$

$$f_{\text{Recirc}} = \frac{P_{\text{Recirc}}}{P_{\text{Gross}}} = \frac{1}{\text{Plant Gain}}$$

A minimum electrical gain of 3 to 4 is necessary (but not sufficient) for economic viability

Improvements to gain need to be weighed against cost impacts on affected systems

Improvements to gain need to be weighed against cost impacts on affected systems

An integrated systems approach is required to develop an economically viable plant design

At the top level, LIFE plant can be grouped into 8 functional elements

LIFE work breakdown structure extends these 8 elements to an additional 350 lower level functional elements

Cost of electricity can be deconstructed into capital and operating costs

Cost of electricity can be deconstructed into capital and operating costs

Aggregation of cost centers yields cost of electricity \$65/MWhr

Deployment strategy revolves around demonstration of the LIFE "fusion kernel"

Kernel is 384 beams, 6 meter fusion chamber

LIFE is economically viable over a range of plant sizes

Modular fusion chamber enables commercially viable plant without need for ODS or SiC

Fully mature LIFE technology would likely move toward >1000 MW plants for economy of scale

 Quantified in terms of confidence level that an issue has been demonstrated as resolved X impact if it is not resolved

	Degree of Resolution	Low	Med	High
Impact		0	1	2
Low	1	0	1	2
Med	2	0	2	4
High	3	0	3	6

High Impact: Show-stopper Med Impact: Major impact on economics Low Impact: Significant but manageable impact on economics

- Commercialization is divided into four phases that roughly map to TRL levels 1 through 9
 - Modeling/Concept Level Testing: TRL's 1 to 3
 - Subsystem Level Testing/Laboratory Environment: TRL's 4 to 6
 - Integrated Fusion Environment Testing (Commissioning): TRL's 7, 8
 - Initial Commercial Operations: TRL 9

Delivery strategy is to progressively reduce risk to support continued investment and commercialization

Delivery plan reduces risk to commercially acceptable levels

				TRL 1 to 3	TRL 4-6	TRL 7-8	TRL 9
						Testing During	
				Modeling/Concept	Testing/Laboratory	Commissioning	Initial Commercial
WBS	Issues		Impact	Level Testing	Environment	Phase	Operations
	Fusion	Physics		l i			
		Gain ≽60	м	2	0	0	0
		On-the-fly ignition	н	6	3	0	
		>~99% probability of ignition	M	0	2	0	
		Materials compatible w/Manufacturing	м		2	0	
		Materials compatible w/Manufacturing	м	2	3	0	
		Materials compatible w/Beam Bron		2	2	0	
		LEH compatible w/focal cost EO ctandoff		2	0	0	
	Eucion	Targete		3	0	0	(
	Fusion	Targets		2	0	0	
	-	Di layer în production environment	н 	3	0	0	
	_	Target survival: injection, flight	H	0	3	0	
	_	Mass manut: 400M/yr, <\$1	н	b	3	0	(
		Minimal Tritium Inventory	IM	4	2	0	(
	Tritiun	n Fuel Cycle					
	_	Tritium Breeding Ratio	н	3	3	0	(
	_	Recovery from Li	н	3	0	0	
	_	Recovery from Xe	Н	3	0	0	0
	Target	Injection and Tracking					
		Accurate and repeatable in fusion env	Н	6	3	0	0
		Injector reliability in fusion env	м	4	2	0	(
		Target survival in injector (fusion env)	Н	6	3	0	0
		Injector availability	м	2	2	0	
		Target tracking in fusion env	Н	3	3	0	C
	Laser Fusion Driver						
		Rep-rate operation	Н	3	0	0	C
		Final optic survival	н	6	3	0	(
		Electrical efficiency	м	2	0	0	(
		Target engagement	Н	6	3	0	(
		Focal spot consistent with LEH	н	0	0	0	(
		Laser system availability	м	2	2	0	(
	Fusion	Engine					
		First wall radiation damage survival (HT-9)	н	3	3	0	C
		First wall radiation damage survival (ODS)	н	6	6	3	C
		Chamber clearing	н	6	3	0	(
		Debris management	н	6	3	0	
		Heat removal	м	2	0	0	
		Thermal and mechanical insults	н	3	3	0	
		Corrosion	м	4	2	0	(
		Fabrication (ODS)	м	2	0	0	(
		Tritium containment	н	6	3	0	(
	1	Availability	м	1	1	2	
	-	Concept of maintenance	м	4		2	
	-	Broduction canability for ODS	M	4	2		
	Power	Conversion Systems		4	2	2	L. L
	Fower	Panking integrated with fusion source	1.4				
	1	nankine integrated with fusion source	1141	2	2	2	L L

 Fusion delivery abstracted to 38 core technical issues

Most technical risk is retired by completion of commissioning phase

Commissioning phase provides the fusion environment needed to qualify materials and processes needed for commercial operations

LIFE schedule, consistent with RD&D, Construction and Licensing timescales is being developed

LIFE schedule, consistent with RD&D, Construction and Licensing timescales is being developed

LIFE can be an economically attractive source of low carbon electricity

Nicholson et al, Energy (2010)

NIF-1210-20668s2.ppt

Anklam—PS&A Review, January 20, 2011