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LIFE laser architecture attributes

* Provides ~18% efficiency at high repetition rate (16 Hz)
— Diode pumped, Helium cooled amplifiers
— High efficiency harmonic conversion using pulse splitting

« Will be built with existing materials
— Glass slabs: thermal birefringence compensated by architecture
— DKDP Pockels cell: polarization switching minimizes heat load

» Designed for high availability operation
— Robustness: Low 3w fluence operation, no plasma electrodes
— Headroom: beamline power to meet operational requirements
— Optics preparation to mitigate damage

- Suitable for remote (off-site) manufacturing
— Modular beamlines permit hot-swapping
— Separation of laser manufacturing & power generation operations
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The LIFE laser builds from a long line of glass laser ‘

systems developed for the ICF program
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The NIF laser provides the single-shot baseline

NIF Beamline
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Master oscillator / Preamplifier / Multi-pass architecture
Passive optical system performance

Line Replaceable Unit (LRU) methodology
Whole-system design, construction, commissioning and operation
Optics production and performance experience base

Coupling demonstration to full-scale IFE target
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LIFE combines the NIF architecture with high
efficiency, high average power technology

LIFE Laser 1w Beamline Architecture

Normal amp slabs
Passive switching

Helium cooled amps

Lower output fluence
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Diode pumps = high efficiency (18%)

- high repetition rate (16 Hz) with low stress
- compensated thermal birefringence, compact amp

- performs at repetition rate

- less susceptible to optical damage
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LLNL average power lasers have been proving

grounds for several key LIFE technologies

25 kW high average power laser

600W, 10 Hz

Mercury Laser

i
30cm x 140cm breadboard SA

J. Honig, et. al, Appl. Opt. 46, 3269 (2007)

g A.J. Bayramian et. al, Fusion Sci. Tech. 52, 383 (2007)




1igh availabili sing hot-swappable components

was demonstrated on AVLIS //
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AVLIS maintained long-term (10 year) 24/7 operation at 99% availability
with 1500 hr MTBF line replaceable units (LRUs)
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End-to-end simulations follow the 1w beam path to

the harmonic converter and through the 3w relays

3w Converter +
integrated CPP

3w Relay
Telescopes

2.2 m wide x 1.35 m high x
10.5 m long Beam Box Laser

1w Relayed 415 mm
Square Beam

Neutron
Pinholes

3w Relayed 415 mm
Square Beam

Trombone
System 3w Relay
Trombone Adjustment
System For
Equal Path

Length



The modular laser system allows realistic reliability
specifications, affecting plant availability by <1%

1w beamline-in-a-box
* Truck-shippable

- Efficient
« Damage resistant
Dual neutron pinhole allows hands-on . Affordable
maintenance in laser bay
* Reliable

Target Shooter
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‘l LIFE box in laser bay
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Detailed propagation simulation (based on measured NIF

optics aberrations) shows excellent performance

Beam contrast at the final Focal spot at hohlraum
Fresnel optic is excellent. clears the laser entrance hole
Fluence Physical Laser Entrance

Hole (LEH) 4.4 mm

After plasma closurs 3.7 mm
(£0.25 mm}

After painting accuracy 3.1
mm {+0.3 mm)

(Jlcm?)
2.5

2.0
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After tilt error 24 mm

1.5
{+0.36 mm)

1.0

0.5

Laser spot, 9%
power, 2 242 mm
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X (cm)
Energy = 5462 J Outer illumination cone is shown, with
Mean fluence = 1.55 J/cm? allowances for pointing and plasma

Contrast = 6.5% closure.
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The LIFE laser will achieve high efficiency, optimized

at ~18% to balance economic and performance terms

Electrical to 3w Optical Efficiency
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« APG-1 laser glass

* 5.7 kd/lbeam @ 3w

* 25-cm aperture @ 1o

* 1-cm-thick slabs

» 384 beams (2.2 MJ @ 3w)

» Cooling power not included
(~16% including cooling)
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Use of an existing glass (APG-1) as the gain media /

enables rapid LIFE driver development

Nd:glass

Storage Lifetime (ms) 0.36 o the LIFE Luser brogeam
Absorption FWHM (nm) 12.5
Laser Wavelength (nm) 1053 S"C‘;IOTDT{O& pfc"
Pump Wavelength (nm) 872
Quantum Defect (%) 17 January 19, 2011
Saturation Fluence (J/cm?) 5
Thermal conductivity (W/m K) 1
Thermal fracture coeff. (W/cm) 1.3
Fabrication (cm?) 40 x 70
Operating Temperature (°C) 25~80
The LIFE baseline Schott APG-1 (commercially available)

» Schott White Paper confirms readiness to supply

« Similar White Paper(s) from vendors in optics, coating & laser industries
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Diode suppliers state LIFE targets are achievable
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Introduction and Overview

Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the
National Igmition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omegza
Facility at the Laboratory for Laser E (LLE) in Roch . NY. For power plant applications,

these lasers must be pumped by semiconductor diode lasers to achieve the required laser system
efficiency, repetition rate, and lifetime. Inertizl fusion energy (IFE) power plants will require
approxmmately 40-to-80 GW of peak pump power, and must operate efficiently and with high system
availability for decades. These considerations lead to requirements on the efficiency, price, and
production capacity of the semiconductor pump sources. This document provides a brief summary of
these requirements, and how they can be met by a natural evolution of the current semiconductor laser
mdustry.

The detailed technical requirements described in this document flow down from a laser amplifier design
described elsewhere. [1] In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-

pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during 2 ~200
s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baaelme design of the

diode array employs a 2D mosaic of submodules to facil f ng. As 2 baseline, we envision
that each submodule 15 an amay of vertically stacked, 1 cm wnde. edge-emitting diode bars, [e.g.: 2] an
industry standard form factor. These stacks are dona backplane providing cooling and

current drive. Stacks are conductively cooled to the backplane, to mmimize both diode package cost and
the number of fluid interconnects for improved reliability. While the baseline assessment in this
document 15 based on edg g devices, the lifier desizn does not preclude future use of swrface
emitting diodes, [3,4] which may offer appreciable future cost reductions and increased rehability.

The high-level requi s on the d lasers mv ol\e mhablhtv price pomts on a price-per-
Watt basis, and a set of technical reqn The techm s for the hifier desizn m
Ref. [1] are discussed in detail below and are summarized in Table 1. These values are still subject to
changes as the overall laser system continues to be optimized Smnce pump costs can be a significant

3

* 2009 Industry Consensus: 3¢/W @ 500 W/bar, with no new R&D
Sustained production of LIFE plants reduces price to ~$0.007/W
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3w optical damage can be eliminated using existing

NIF technologies and through fluence scaling

Fused Silica Lenses

Initiations per NIF-size Optic
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Tremendous progress has been made
improving the damage resistance of

optics for NIF

LIFE: average fluence reduced by 2X
to add margin against modulation for

high average power
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High laser system availability achieved through
modular architecture and on-line maintenance
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Laser architecture largely decouples system

availability from beam box reliability

Plant availability as a function of MTBF
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Laser system availability > 99%
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Injection and tracking accuracy are readily

obtainable using conventional technology

Conventional gas gun to inject at
500g, 250m/s, ¥500um (3.30).
FEA models show that the target
is mechanically robust

Target tracking and individual
beam-line sensors feed back to the
laser front-end for engagement.
Calculated error of £75um

Engagement pulse

ey

Output pointing &
engagement sensor

pointing sensor

Integrated experiments underway this year
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LIFE laser architecture attributes

* Provides ~18% efficiency at high repetition rate (16 Hz)
— Diode pumped, Helium cooled amplifiers

— High efficiency harmonic conversion using pulse splitting

» Designed for high availability operation
— Robustness:
— Headroom: increased beamline power to compensate outages
— Optics preparation to mitigate damage

= 7 || - Suitable for remote (off-site) manufacturing

NIF-1210-20669.ppt

« Can be built with existing materials = E
— Glass slabs: thermal birefringence compensated by archltecture
— DKDP Pockels cell: polarization switching minimizes heat load

Low 3w fluence operation, no plasma electrodes

— Modular beamlines permit hot-swapping
— Separation of laser manufacturing & power generation operations
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