Fast Ignition Review

National Academy of Science Albuquerque, NM 3/20/11

Richard R. Freeman

The Ohio State University

OHIO SIAIE High Energy Density Physics Group Scarlet Laser Facility (SLF)

Contributors

	R. Betti W. Theobald D. Meyerhofer	A. Solodov C. Ren	
UCSD UCSD	F. Beg	T. Yabuuchi	
GENERAL ATOMICS	R. Stephens	M. Wei	
	M. Key P. Patel H. McLean	A. Kemp M. Tabak D. Strozzi	H. Shay R. Tommasini D. Larson M. Marinak
DEPARTMENT OF DEPARTMENT OF PHYSICS	K. Akli	D. Schumacher	
	University of Rochester Fusion Science Center		

OHIO

2

Fast Ignition Review

- I. Promise of Fast Ignition (FI)
- II. The Reality of FI: Issues
- III. Focused Efforts on Issues Yield Progress
- **IV. Current Aggressive Efforts on Divergence**
- V. Forward Leaning: Plans, Milestones, Metrics
- VI. Summary & Conclusions

"CHS" vs "FI"

FI Potentially Has Advantages over CHS

FI is conceived as a "2nd Generation Scheme" for ICE

5

Ignition Schemes in FI

OHIO SIAIE

Principle Steps in Cone- Guided FI

No code capability currently exists that can model this physics selfconsistently; FI program is developing ability to link codes

Min. Ignition Energies (Atzeni 1999)

Scarlet Laser Facility (SLF)

8

First Hot Electron Yield Enhancement

Gekko XII (2002)

Many Active FI Programs World-wide

OHIC SIAIL

Fast Ignition Review

- I. Promise of Fast Ignition (FI)
- II. The Reality of FI: Issues
- **III. Focused Efforts on Issues Yield Progress**
- **IV. Current Aggressive Efforts on Divergence**
- V. Forward Leaning: Plans, Milestones, Metrics
- VI. Summary & Conclusions

OHIC

Reality of FI: Issues

SCIENTIFIC

- > Divergence of hot electrons
- Compression of Target with Cone

***TECHNOLOGY**

- Facilities
- > Target Fabrication
- Ignition Laser Driver

OHIO SIAIE

Science Issue: Electron Divergence

OHIO SIAIL

Full Scale FI Modeling shows large angles

PIC LPI followed by hybrid charge transport calculations predict that the average divergence angle in hot DT is 52°:

Because of this large divergence, the "point design" is pushed towards having the hot electron source as close to the compressed core as possible. Under any reasonable cone-core offset scenario, the modeling result is that the ignition energy required jumps from ~20kJ for collimated electrons to well over 200kJ.

As we discuss below, control of the hot electron divergence is <u>the</u> major physics and technology issue confronting FI

Technology Issue: Facilities

OHIC

Science Issue: 2D Hydro Design

INDIRECT DRIVE

- •DT mass = 2.75 mg
- •Peak density 310 g/cc
- •Drive 1.4 MJ
- •Gain = 106
- •Stand off 110 µ of cone tip from core

High Energy Density Physics Group Scarlet Laser Facility (SLF)

Science Issue: Cone Target Compression

OMEGA-EP BACKLIT IMPLOSION

OHIC SIAII

- EP-Backlight Compton Radiography @ 100 keV
- > Empty CD Shell, 40µ thick
- Reentrant Cu Cone
- ρR ~180mg/cm²

Technology Issue: Cones (current GA)

- High Z metal parts
- Foam-lined plastic shells
- Robotic assembly
- LIFE (indirect drive) targets: costed @\$0.30/target delivered

OHIC

3/30/2011

18

Technology Issue: Ignition Laser

Full Scale short-pulse laser driver

- Energy TBD (at least 100kJ)
- Pulse Length 20psec
- Possible 2w conversion
- High Contrast ratio
- Wall-Plug Efficiency

Fast Ignition Review

- I. Promise of Fast Ignition (FI)
- II. The Reality of FI: Issues
- **III. Focused Efforts on Issues Yield Progress**
- **IV. Current Aggressive Efforts on Divergence**
- V. Forward Leaning: Plans, Milestones, Metrics
- **VI. Summary & Conclusions**

OHIC

Focused Efforts: Advanced Modeling

OHIC SIAII

Focused Efforts: Advanced Modeling

- 200kcpu-h @2048 cpus on ATLAS
- Simulate 40 µm diameter laser pulse for 2 ps duration
- I=1.4x10²⁰ W/cm², 120x160 µm box, 50 cells/µm, 32e+32i ppc

 These simulations provide the first realistic electron source distributions for subsequent transport calculations

High Energy Density Physics Group Scarlet Laser Facility (SLF)

Focused Efforts: Advanced Modeling

- 3D simulation initialized with axisymmetric profiles at beginning of electron pulse
- 47.7 million zones in HYDRA mesh with 100 million IMC photons run on 1024 processors
- 36 millions zones in Zuma mesh 1 μm resolution on each mesh

Fully integrated 2D/3D capsule implosion, core heating and burn simulations

Many Groups Contribute to Modeling

Fast Electron Core Heating at OMEGA EP

Demonstration of fast electron core heating under well understood conditions

Fast Ignition Review

- I. Promise of Fast Ignition (FI)
- II. The Reality of FI: Issues
- III. Focused Efforts on Issues Yield Progress
- **IV. Current Aggressive Efforts on Divergence**
- V. Forward Leaning: Plans, Milestones, Metrics
- VI. Summary & Conclusions

Control of Hot Electron Divergence

Whether fast electron FI is viable depends on what happens to the hot electrons in this region

If they leave the cone tip collimated, a point design with ignition energies <100kJ Is likely

If they leave the cone tip spread into 2π NO reasonable point design is possible

TWO DIRECTIONS FOR MODELING AND DESIGN:

- External Magnetic Fields
- Self-generated Resistive Magnetic Fields

Divergence: Applied B Fields

OHIO SIAIL

Divergence: Applied B Fields

If details of B_{initial} configuration can be worked out, FI at 100 kJ appears possible

OHIC

3/30/2011

Proton FI Concept

Proton FI Concept

LSP Set up for Proton FI

OHIO SIAIL Proton FI has only recently been subjected to the same level of scrutiny as electron FI

Potential:

- Laser : elec eff. ~80%
- electron : proton eff. ~30%
- Proton frac in hot spot ~30%
- Laser energy for ignition ~180kJ
- Requires, e.g 2x1020 Wcm-2 on 200 μ diameter for 4 ps at 1.06 μ

Fast Ignition Review

- I. Promise of Fast Ignition (FI)
- II. The Reality of FI: Issues
- **III. Focused Efforts on Issues Yield Progress**
- **IV. Current Aggressive Efforts on Divergence**
- V. Forward Leaning: Plans, Milestones, Metrics
- VI. Summary & Conclusions

OHIC

Going Forward: Short Term Objectives

CODE DEVELOPMENT

- > Integration PIC with Hydro 3D/2D
- > EOS and Ionization, material properties in transport codes

MODELING

- Long Pulse (Hydro—cone suvival)
- Short Pulse LPI (prepulse), Direct Comparison to Experiment
- Direct Support of Point Design Effort

EXPERIMENT:

- Electron Generation and Transport at EP Conditions
- > 100 vs 200 Dependence of LPI (pre-pulse effects)
- Direct Experiment/Full Scale Modeling (Benchmark)

Going Forward: Milestones and Metrics

FIVE YEAR METRICS:

- "HARD" Point Design from Fully Integrated Modeling
- Sub-Critical Integrated Tests on Omega-EP
- Full Scale Hydro compression on NIF

TEN YEAR METRICS:

- > Design, Construction and Test of Modules for Ignition Laser
- \succ Test at Full Scale Compression (NIF) \rightarrow
 - Sub-Ignition (NIF_ARC)
- > Capsule Design Realized on Production Scale

TWENTY YEAR METRIC:

SIATI

> Design, Construction of FI-IFE Power Plant

SUMMARY AND CONCLUSIONS

✓ Fast Ignition continues to hold great promise for IFE

Fundamentals of intrinsic high gain and relaxed target specs are significant and worthy of intense research efforts

Initial implementation of FI concepts, ones that encouraged speculation of problem-free development, were overly optimistic

Nearly 10 years of International Effort has led to paths for solutions to problems; only in the last 3 years have we seen the computational and experimental capabilities to analyze FI issues competently

✓ Fast Ignition research draws from and leverages 50 years of NNSA investment

Computational and Laser Facilities needed for advances are in place; NIF and Omega-EP (both existing) will validate core heating and compression prior to any high gain demonstration

✓ Fast Ignition research has a large, scientifically vigorous academic base that feeds NNSA's workforce

FI research gave birth to HEDP science in many universities world-wide

Bibliography

Concept and Basics

E.M. Campbell et al., "Fast Ignition: Overview and Background," and associated articles in *Fus. Sci. Technol.* **49** #3, Special Issue on Fast Ignition (2006).

Energy Requirements

S. Atzeni, "Inertial fusion fast ignitor: igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel," *Phys. Plasmas* 6, 3316 (1999).

S. Atzeni et al., "Targets for direct-drive fast ignition at total laser energy of 200-400 kJ," *Phys. Plasmas* 14, 052702 (2007).

J.J. Honrubia J. Meyer-ter-Vehn, "Fast ignition of fusion targets by laser-driven electrons," *Plasma Phys. Control. Fusion* **51**, 014008 (2009)

Technical/science status

R. Kodama et al, "Fast heating scalable to laser fusion ignition," *Nature* **418**, 933 (2002).

W. Theobald et al., "Integrated fast ignition core-heating experiments on OMEGA," submitted to *Phys. Rev. Lett* (2011).

R.B. Stephens et al., "Kα fluorescence measurement of relativistic electron transport in the context of fastignition," *Phys. Rev E* **69**, 066414 (2004)

J.S. Green et al., "Effect of laser intensity on fastelectron-beam divergence in solid-density plasmas," *Phys. Rev. Lett.* **100**, 0150032 (2008).

B. Ramakrishna et al., "Laser-driven fast electron collimation in targets with resistive boundary," *Phys. Rev. Lett.* **105**, 135001 (2010)

M. Storm et al., "High-current, relativistic electron beam transport in metals and the role of magnetic collimation," *Phys. Rev. Lett.* **102**, 235004 (2009).

Advanced Modeling

A.A. Solodov et al., "Integrated simulations of implosion, electron transport, and heating of direct-drive fast-ignition targets," *Phys. Plasmas* **16**, 056309 (2009).

Y. Sentoku, A.J. Kemp, "Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents," *J. Comp. Phys.* **227**, 6846-6861 (2008).