The Science and Technologies for Laser Fusion Direct drive

John Sethian Naval Research Laboratory June 15, 2010 19th HAPL meeting Oct 22-23, 2008 Madison WI 54 participants, 20 institutions 10 students

Fusion Energy with Lasers and Direct Drive

Summary

- We have carried out an integrated program to develop the science and technology basis for IFE, based on the simplicity and higher performance potential of laser direct drive
- 2. We developed credible approaches for most all the key components
 - a. Lasers
 - b. Final Optics
 - c. Target Fabrication
 - d. Target Injection
 - e. Target Engagement
 - f. Chamber Technolgies
 - g. Auxilliary systems (tritium processing, vacuum, maintenance)
- 3. Many of these were demonstrated in subscale experiments.

Outline

- 1. NRL advocates phased, competitive approach to fusion energy (reprise)
 - a. Phase I: Demonstrate principles with sub scale components
 - b. Phase II: Full Scale Components
 - c. Phase III: Integrated, fusion test facility
- 2. Business model for the HAPL Program
 - a. Multi institutional
 - b. Value: simplicity, durability, cost, ability to test on small scale
 - c. Emphasis on experimental verification
- 3. Development of key components:
 - a. Options considered
 - b. Basis for choice
 - c. Progress
- 4. Report Card
 - 1. What have we done
 - 2. What do we still need to demonstrate to go to Phase II

High Average Power Laser Program (HAPL) History

- FY 1999 & FY 2000: Lasers only: KrF and DPSSL
- FY 2001 March 11, 2009: Lasers plus key components
 - Equal resources to KrF and DPSSL lasers
 - Sponsored by NNSA, following Congressional Direction
- HAPL PROGRAM NUMBERS
 - 19 Meetings
 - > 30 institutions participated
 - National Labs, Industry, Universities, Small Businesses, DoD Lab
 - ~ 31 Students (16 PhDs)
 - > 15 awards from fusion community
 - > 210 Archival Referred Publications
- Direct Drive Target R&D:
 - NRL: KrF laser IFE target designs/experiments (NOT UNDER HAPL)
 - LLE : Glass laser ICF/IFE designs/experiments (NOT UNDER HAPL)
 - LLNL: KrF and DPSSL (glass) based IFE target designs
 - Wisconsin: IFE target designs

HAPL "Business Model" for IFE development

- 1. Develop science & technology as an integrated system
- 2. Managed by one institution, partnership among many.
 - a. Synergies with other fusion approaches
 - b. Engage non fusion community (e.g. materials)
 - c. Encourages alternative views, avoids "groupthink"
- Valued: Simplicity, Durability, and Performance.
 a. Including COST TO DEVELOP
- 4. Developed maintenance /servicing concepts
 - a. Enough to assess viability
- 5. Experimental Verification of Concepts

The Sombrero Power Plant study gave economic guidance, and a starting point

Sombrero: Fusion Technology, **21**,1470, (1992)

1000 MWe, Gain 110 Cost of Electricity: \$0.04-\$0.08/kWh

System efficiency	6-7%
Cost of entire laser ⁽¹⁾	\$225/J(laser)
Cost of pulsed power ⁽¹⁾	\$5-10/J(e-beam)
Rep-Rate	5 Hz
Durability (shots) ⁽²⁾	3 x 10 ⁸
Lifetime (shots)	10 ¹⁰

1. 1999 \$. Sombrero (1992) gave \$180/J and \$4.00/J 2. Shots between major maintenance (2.0 years)

HIGH GAIN TARGET DESIGN

We chose Direct Drive for IFE (Research in US by NRL and LLE)

Indirect (path chosen for NIF)

- Inefficient illumination on target
 - Lasers to x-rays
- More complex physics
- Relaxed laser uniformity requirements

- Efficient illumination
- Simpler physics
- Advances in lasers and target designs overcome uniformity requirements

Direct Drive designs predict higher gain than Indirect Drive. KrF predicts higher gains than DPSSL (glass)

Benefits of higher gain (G):

1) More electrical power output for smaller (lower cost) driver

2) Gives more robust margin

3) Bigger lever than efficiency

Direct Drive: targets less expensive, easier to recycle

2. Lower estimated cost

(Chart from D.T. Goodin, NAS Panel Presentation, 30 Jan, 2011)

IFE Concept	Target Design	Target Yield (MJ)	Est'd Cost/target for 1000 MW(e)	% of E-value
Laser Fusion	Direct drive foam capsule	~400	\$0.17	~6
LIFE	Indirect drive Pb rugby hohlraum	~132	~\$0.30	~30

3. Less material to recycle

Direct Drive constituents: D, T, H, C, plus 0.00013 g Au/Pd = 44 lb/year @ 5 Hz

Indirect Drive constituents: D, T, H, C, plus 1.3 g Pb = 1,168,000 lb/year @ 13 Hz

LASERS

Two laser options for Direct Drive. Both have potential to meet the IFE requirements

Electra KrF Laser (NRL) $\lambda = 248$ nm (fundamental) Gas Laser

Mercury DPSSL Laser (LLNL) $\lambda = 351 \text{ nm} \text{ (tripled)}$ Solid State Laser

FINAL OPTICS

Final Optic Options evaluated

Good:

♦ Neutron damage annealed > 500 °C
 Challenge: (351 nm only)

- No KrF material identified
- Fielding large, heated, thin, optic
- Pinhole may constrain target optics
- Long term residual damage?

Good:

- Very high reflectivity
- High laser damage threshold

Challenge:

Literature shows neutron damage

Good:

Can make base resistant to neutrons

Challenges:

- Laser damage threshold unknown
- Large optic

Chamber Ports and Optical Train

GIMM laser damage threshold: > 3.5 J/cm² @ 10 M shots

Mark Tillack (UCSD)

18

First dielectric mirror predicted to be subject to 0.02 dpa. New dielectric design exceeds this by at least 5 x.

TARGET FABRICATION

Typical Direct Drive Target Components

Notes:

- dimensions vary by target
- foam is ~ 50-100 mg/cc
- can be DVB or RF

Choices for foam shell

- Form in droplet generator by micro encapsulation
 - Apply CH overcoat after or during shell formation

Lab on Chip (LLE)

Target fabrication:

- Mass produce foam shells that meet specs
- Fluidized bed for mass cryo layering
- Estimate Cost < \$0.17 each</p>

TARGET: INJECTION, SURVIVAL, and ENGAGEMENT

1. Light Gas Gun. Cryogenically cooled sabot	Sabot <u>mechanically</u> diverted in muzzle	Target placed within 10 mm of chamber center
2. Electromagnetic Launcher. Superconducting Sabot	Sabot <u>magnetically</u> diverted in muzzle	Engagement system does final pointing

Light Gas Gun Prototype Injector

- Demonstrated 5 Hz operation
- Achieved required 400 m/sec
- Demonstrated separable sabot (and recovery)
- Target placement accuracy +/-10 mm

Demonstrated in flight sabot separation and capture

Target Engagement: Concept based on detecting "Glint" off the target.

Target Engagement: Bench test: Mirror steers laser beam to target within 28 um. Need ~20

Calculations shows Direct Drive Targets can "survive" injection into the chamber

Pd/Au coating meets requirement for R > .95 (high IR reflectivity) and high DT permeability

Experiments: Initial target temperature can be at least as low as 16 °K

DT ice layer over foam demonstrated to be smoothest, thermally robust Allows warm up of ~ 3° during injection without compromising DT ice layer

First Experiments: D-T layer subjected to rapid heat flux suggests target should survive injection.

Start:

<u>Pure</u> DT Ice layer
460 μm thick
@ 19 °K
No foam, high start temp, no IR protection

Heat (applied electrically): 0.5 W/cm² ~60% of prototypical heat flux*

Response:

Layer degrades at 20 msec

Target "in chamber residence time" is 20 msec*

 * 0.8 W/cm² for chamber at 800 °K, 2mTorr gas at 4000 °K, 8 m radius chamber, 400 m/sec injection velocity

J. Hoffer and D Geller (LANL)

More advanced target designs allow better thermal protection and/or addition of chamber buffer gas

Effect of adding low density (100 mg/cc) foam on *outside* of target

REACTION CHAMBER

The "first wall" of the reaction chamber must withstand the steady pulses of x-rays, ions and neutrons from the target.

Typical Calculated First Wall Response

154 MJ Target @ 6.5 m radius No gas in chamber

A Raffray (UCSD)

Chamber options we considered

Solid wall / vacuum	Simplesteasiest to test Eases laser / target issues <i>Materials challenge</i>
Magnetic Intervention / Vacuum	Small chamber <u>Really Eases</u> laser / target issues The ion dumps
Replaceable solid wall / vacuum	Eases laser / target issues Mechanical/operational complexity
Gas in chamber	Smaller chamber Challenging laser / target* issues Chamber recovery (plasma?)
Thick liquid walls	No materials issues (i.e.neutronics) Challenging laser / target* issues Droplet formation/ complexity
	37

We need gas relief!

The top six reasons to eliminate the **<u>buffer</u>** gas:

- 1. Allows "simple" (non-insulated) target
- 2. Slower injection velocity (primary heat load is radiation)
- 3. Minimizes difficulty in engaging target Target placement limited only by injector accuracy.
- 4. No need to handle a "foreign" gas 50 mT Xe (STP), 5 m radius @ 5 Hz, 10 % recycled = 3,500 tons/yr, 2,000,000 liters/yr
- 5. Easier and faster to "reset" chamber for next shot
- 6. Threat spectra on wall tough to calculate, very difficult to test

Solid Wall Chamber: Experiments/Modeling

Thermo-mechanical cyclic stress (surface and interface): Mostly Solved

10 Time (sec)

Remaining Major Challenge Helium Retention:

The problem of helium retention may be solved with "nano-engineered" armor

The Problem:

- He ions penetrate deeply (1-5 μm)
- Have short migration length (150 nm)
- Agglomerate into bubbles
- Exfoliate the wall

The Solution:

- Make armor from tungsten fibers
- Diameter < 150 nm
- Helium stops close to free surface
- He migrates out (cyclic heat helps!)

First "Nano-Engineered" Tungsten helium retention experiments are encouraging

Experiments show IFE wall temperature cycle may also mitigation of He retention. Basis: get the He out before it forms into bubbles

Magnetic Intervention: Cusp magnetic field keeps ions off the wall (in Plasma Physics terms: Conservation of $P_{\theta} = mrv_{\theta} + (q/c) rA_{\theta} = 0$

- Plasma starts at center (A_θ = 0,v_θ=0)
- Expansion initially spherical

- lons expand into increasing field.
- Expansion stops when mrv_θ = (q/c)rA_θ
- lons, *at reduced power*, leak into external dumps

 $\begin{array}{ll} m = mass & v_{\theta} = azimuthal \ velocity \\ q = charge & A_{\theta} = azimuthal \ vector \ potential \end{array}$

Advantages of Magnetic Intervention

- End runs the helium retention / heat load challenge
- Small chamber (5.5 m radius at 350 MJ yield)
 - Less material to handle
 - Eases target injection (velocity ~ 100 m/sec, vs 400 m/sec)
 - Eases target placement
- Armor can be SiC
 - Better neutron resistance/thermal properties than tungsten
 - Temperature rise only 140 °C (vs 1000 1500 °C with tungsten)
- Simple field coils
- Physics demonstrated on small scale
 - Supported by modeling

1979 NRL experiment showed principle of MI. Recent simulations predict plasma & ion motion

*R. E. Pechacek, et al., Phys. Rev. Lett. 45, 256 (1980).

NRL A.E. Robson (NRL-Consultant) D.V. Rose (Voss Scientific)

An *example* of a Magnetic Intervention Chamber

Ions deflected downward by magnetic fields Ion energy absorbed in Gallium Rain Ion Dissipaters™

Chamber radius: 5 m Point cusps: 10 T Main coils: 0.75 T

Energy absorption in Ga: 85% in first 10 mg/cm² 15% in next 100 mg/cm²

Only first layer evaporates

Gallium inventory enough so mean temp rise < 300°C

NB Vapor P of Ga = 10^{-6} T at 720 C

A.E. Robson (NRL-Consultant)

Magnetic Intervention: FAQ

- 1. WHY A CUSP, and NOT A SOLENOID?
- Physics (conservation of P_{θ}) guarantees ions won't hit wall
- Cusp has good curvature, stable against interchange and flute modes

2. HOW BIG ARE THE FIELD COILS?

- Belt coils: 0.75 T (7.5 kG)
- Poloidal Coil: 10 15 T, but these only 15 cm dia

3. WHERE ARE THE COILS LOCATED?

- Behind blanket
- Do not interfere with beam ports

4. WHAT ABOUT CHARGE EXCHANGE?

• Vacuum keeps chamber below 1 – 1.5 mTorr

5. WHAT ABOUT INSTABILITIES?

- Mean free path = 10⁵ X chamber dimensions>>> No collosions, no MHD
- Streaming instabilities (if present) only affect sheath thickness ($\sim c/\omega_{DD}$)

Breeding, Tritium Processing, Thermal Conversion, Maintenance, etc

Report Card: What have we done, and what should we do to justify transition to Phase II

• Optics components resistant to prototypical neutrons, laser damage

- Need larger sizes, need extension to 300 M shots (from 10 M)
- Can mass produce high precision foam shells for targets
 - Need higher yield for thin gas tight coating

• Demonstrated smooth DT ice over foam layer

- Need mass production layering demonstration (Fluidized bed)
- Need higher fidelity DT/foam warm up experiments, better modeling

• Demonstrated target engagement using glint technique

- Need another 8 um pointing (now at 28, need 20)

• Several viable chamber concepts, backed with experiments/theory

- Needs further experimental verification of some key concepts
- Needs refinement and integrated design

• Have conceptual designs for ancillary components:

Blanket, tritium handling/processing, vacuum system, power conversion

49

Summary

- We have carried out an integrated program to develop the science and technology basis for IFE, based on the simplicity and higher performance potential of laser direct drive
- 2. We developed credible approaches for most all the key components
 - a. Lasers
 - b. Final Optics
 - c. Target Fabrication
 - d. Target Injection
 - e. Target Engagement
 - f. Chamber Technolgies
 - g. Auxilliary systems (tritium processing, vacuum, maintenance)
- 3. Many of these were demonstrated in subscale experiments.