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Aspects of Plasma Diagnostics to achieve
Burning Plasma Physics Goals in FIRE

 The diagnostic set should provide the same
guality of data as in best present-day devices.

 High quality, reliable information on many
plasma parameters will be used to provide
control signals.

 New information about the alpha-particles.

e The neutron radiation environment must be
considered In design of the diagnostic system.
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Outline of Talk

e Specifications of the measurement goals,

* Aspects to be considered in design.
— Port configurations,
— Radiation effects,

— Specific issues for different diagnostic
technigues.

e Alpha-particle measurement.
%I'FPI.
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Examples of Target Plasma

Measurement Capability proposed for

ITER-FEAT

PARAMETER RANGE SPATIAL TIME

PARAMETER RESOLUTION RESOLUTION ACCURACY
Plasma current 0.1-17.5MA Not applicable 1ms 1% (Ir>1 MA)
Total neutron flux 1x18 - 1x1®1n st Integral 1ms 10%
Neutron & 1x10%4-4x108nsIm3 a/10 1ms 10%
a-particle source
Divertor surface temperature 200 - 2500°C - 2ms 10%
Core electron temp-erature 0.5 - 30 keV a/30 10 ms 10%
profile
Edge electron density profile (0.05 - 3) X8on3 0.5cm 10 ms 5%
Radiation profile in main 0.01 -1 MWm3 a/l5 10 ms 20%
plasma
Radiation profile in divertor <100 MWn3 5cm 10 ms 30%
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Simplified List of Measurements for
Input to Control Systems

 Fast Plasma Shape and Position Control:
— Magnetic diagnostics, IR camera
« Kinetic Profile Control:

— Thomson scattering, Interferometer/Polarimeter, Reflectometer,
ECE, CXRS (T, and He-ash), Neutron Detectors,

e Current Profile, Rotation Control:
— Magnetic diagnostics, MSE, CXRS
e Optimized divertor operation:
— Interferometry, IR camera, Spectroscopy
* Fueling control:
— D, T monitoring (edge good enough?)
« Disruption prevention (First-wall/ Divertor Protection):
— Magnetic diagnostics 8; MHD), kinetic profile set
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FIRE Port Configuration

- Large radial ports with
extended necks,

« Very small vertical ports, 3

o X-point aligned ports to [T
be shared with in-vessel B O
services, and “blocked '
sightlines”, but could be | '
used for divertor sightlines. Subilization Coils

\ Active Stabilization
Coils

FIRE vacuum vessel concent
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Use of Access Ports

Extremelygood radial
access (with shielding),

Very limited access top a .y
bottom,

Use top and bottom outet
ports for viewing divertors .
bolometers, light arrays, ~ kEe- O GEsssses..

25 cm Diameter Beam flie: ITER Midplane R4A
Transier Line

Use. tangentlal arrangemenz§~lCEPT FOR INTERFEROMETER/POLARIMETER
for interferometry, TS, etc. FORITER

— Pt 2
/‘ %
Refroreflector at Bottom of Blind Hole

Penetration In Midplane Port Shiekl Plug
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The Impact of the Neutron
(Gamma) Environment

e Special design and materials to be used for
In-vessel systems

— Also prevents the use of many present-day
diagnostic components.

 Requirement for thick shielding, penetrated
by complex labyrinths

e Constraint on the use of optical components,
especially lenses and fiberoptics.
5PPPL
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How does Radiation Impact Use of
Ports for ITER?

_ql'_
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Bl
Ehicld Plug

ITER port for LIDAR
Thomson scattering

ITER Physics Basis,
Chapter 7
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for ITER neutron camera

Tangential arrangement proposed for %F F Pl
interferometer/polarimeter in ITER PRIMLETSN PSS
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Radiation Effects
(Ceramics (1), Optical components (2), Mirrors (3))

First Wall (Gy/s) Interspace Outside Vac. Fluence
Structure/ Vess. Port
Shielding (Gyls)
ITER- 4x1C <mmmmmmmmmmee- > 5 Issue at T'
FEAT + neutrals — N wall (|Oﬂg-
(700 MW, term damage)
0.8 MW/n¥) Few x 0.1 dpa
FIRE 2% 10 e > 20 Non-issue
(220 MW,
3.6 MW/n¥) + neutrals — —
Components Magnetics (1) ----- ------ > Windows (2)
Mirrors (3) Fiberoptics (2)
S Ml-cable (1)-- ---------------- > Optical comp-
Lost-Alpha onents ? (2)
Retroreflectors (3) Vacuum-diag.
Thermocouples (1) Detectors? (1)
Gauges (1)

Numbers are approximate and average
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Radiation Effects on Diagnostic Components

e Diagnostic Component  Worst Radiation Problem

e Ceramics (and Detectors) Electrical (RIC, RIED, RIEMF)
— Studies of RIEMF in progress for MI-cable used in coills.

* Fiberoptics (and Windows)  Absorption, Luminescence, Numerical
aperture

— Developments of new doped fibers in progress for reducing absorption,
— Luminescence problem for low-light level signals.

 Mirrors Mechanical + Neutrals in Surface
Modification (near first wall)

— Studies of surface damage impact and of surface preparations in progress.
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Magnetic Diagnostics: Issues

e Loops, coils, MI-cable

m USt be InSIde Vacu u m COMPARISON OF THE MEASURED RADIATION INDUCED
CONDUCTIVITY IN MONOLITHIC CERAMICS vs. MI CABLES
Vessel : 1 0 v T Ty

ash
9
(2]

« Maximally unfriendly
environment;, RIC and
RIEMF, temperature,
neutral particles,

* No In-built protection,

e Renew R&D program on [
radiation impact on T owmne pose mme oy
ceramics/MI cable.
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Radiation Effects on Optical Systems

« Radiation discolors/blackens optical components,
 Hence must use reflective optics in high-radiation areas.
o Optical fibers suffer from:

— Prompt luminescence,

— Prompt absorption,

— Long - term absorption damage,

— Effective change in numerical aperture.
* Running fibers hot only affects the long-term absorption.

o Great disparity in radiation effects on nominally identical
fibers.

~PPPL
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Luminescence (and Absorption) Impact
on Measurement in ana-diagnostic

TFTR Escaping Alp ha Diagnostic

TFTR

Vacuum Vessel

Plasma

¢

90° 60°‘_J Probes
Shielding %
for fiber bundles T

Test Cell Floor

Quartz coherent
fiber optic bundles

Radiation
Shielding
Enclosure

Basement Floor

Darrow, Zweben et al.
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Lost-a diagnostic on TFTR with
fiberoptic outside vacuum vessel.
TFTR shot at 5SMW (5x18 MW/m?

at first wall.
Dose at front end of fiber ~ 30 Gy/s
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Issues for other Individual Systems

e Good spatial resolution diagnostics like x-ray
diodes, bolometers, CCD cameras susceptible to
failure In radiation background,

* Low-light level spectroscopic measurements
susceptible to radiation noise, absorption
(calibration!)

 Magnetic field, density range affect choice of
microwave diagnostics,

« Auxiliary heating technique affects diagnostics.
st'FE"!.
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Thomson Scattering: Issues

e Imaging system required for e
spatial resolution (cannot use S
LIDAR), : 05 :
 Optical systems need shieldi - === = N
& SO Collecting Optics with
o Difficult sightline ; / SR medng susen
arrangement; will have to usc o
tangential laser beam, view /7% [ =%
from nearby port, with close e

front-end mirror. KSTAR Concept for TS

%FHIH[HUI‘I PLASITIH
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Good Profile Diagnostics currently

Require a N

* Ti(r), vi(r), vg(r), a(r), Myg-asikh),
(E(r).

* (Good poloidal rotation needs
opposing views; not possible

* Diagnostic beam near-radial;
penetration at ~100keV/amu
problematic,

e Diode beam, 5x1V for <1ms
for CXRS?

MSE prefers > 300 keV/amu.
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eutral Beam

— 49651
— 49382, ICRH pre-heat
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MSE g-profiles in the target phase of two JET Optimized
Shear discharges. The g-profile for shot 49651 is typical for
JET OS plasmas. Shot 49382 had LHCD and ICRF in the pre-
heat as well as the beams and it shows a strongly reversed g-

profile (Stratton, Hawkes, et al.)
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Divertor Diagnostics

e Divertor diagnostics must relate to the
physics goals of the device

— Needs strong modeling interaction,

— Important for impurity, fueling and ash
measurements, tritium accountabillity,

— Need validated control schemes.
e Detachment monitoring.

o Survivability of position and shape
measurements.
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Diagnostics for Alpha-Particle Physics

e Lost fast-ion detectors and
IR camera,

« 0-CHERS,

e Collective scattering >~20
(CO,, ?),

o Li-pellet, fast neutral Qm

particle analyzer,

30—

Knock-on neutron,

New confineda
detector???

High-frequency Mirnov
coils, reflectometry.
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Fast-ion spectra from Collective Scattering
in TEXTOR (Bindslev, Woskov et al.)
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Alpha-Chers can Provide Absolute
Measurement of some Confined Alphas

R 16 b

Plasma il T
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Charge Exchange between fast beam

ions and slowing-down Alphas Minor Radius (r/2
¢ 0<D,<0.03ms
No data taken in TFTR during neutron pulse.
Improved optical design should provide Stratton, Fonck et al.

time-resolved measurements of alpha distribution
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FIRE: Diagnostics Schedule

YEAR | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11| 12|13|14|15| 16|

Vac. \essel Delivery
* Building Completion
v Divertor & 1st Wall
v Start Tests

. RF Physics
SYSTEMS PHYSICS & ENGINEERING v First Plas

m.
? v DD Physics v DT/Alpha Physics
i = & installation

Shielding/Remote Handling

START UP i

DIAGNOSTICS

Magnetic Diagnostics W
Thermocouples *

Fixed probes
lon gauges

Fast pressure 5

gauges interferomercr NN
Glow discharge Hard xray

Residual gas PlasmdR TV

analysis Bolometa array
Ms /UV suney spect

ECE het. radiometer *
2ND SET Survey Plasma/IR TV Ms. Bremstrahlung

(Physics of Divertor IR TV Multiple chord specometers Divertor VUV s pectrometer ECE grating polychromator
ICRF/dlvertor) Moveable probes \Msible H_alpha TV C_onorThomson@ttmnq ) DIVCI’IOI microwave

Bolomete arrays X-ray crygal spetrometer Divertor Thomson scattering interferometer

\isible survey spectscopy Soft x-ray aray _IR/FIR Mu ltichannel Epithemal neutron detectors

H-alpha monitors X-ray pinhde camera interferometer Charge exchange neutral analyzer

\Misible filterscopes X-ray PHA ECE Michelson iterferometer
3RD SET Reciprocating edge probes m
(FuII DD Vacuum vessel illumination . . . . =1aldler= ITa L . )

h . Soft x-ray arays Tangential d_ensnmeter Diagnostic neutral beam Beam_mlssmn_ speroscopy ECE_ imaging
Physics) Soft x-ray spectnmeter IR/FIR pdarimetry Charge excharegspectroscopympurity pellet inje ctor Multichannel neutron caera
Edge Thomson scatt. Laser induced fluescence Motional Stark effect Edge-density féectometer Neutron fluctuation detectors
ECE grating polychromator Poloidal rotation CES Mm-wave reflectoneter Escaping fast ion/Alphagpticle detectors
i Confined alpha-particle diagnostics

et mpuriy pole niecior
(Full DT/Alpha Multichannel neutrocamera
Physic9 Escaping fast ion/Alpha-particle detectors

Confined alpha-prticle diagnostics

FIRE DIAGNOSTICS SCHEDULE: REVISION O  1septemMBER 1999

SPPPL
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Development Concerns

« What are impacts of high-field, highly shaped, high-n
high radiation, RF-only on diagnostics selection and
development?

Radiation “hardness” of diagnostic components?

Lifetime of plasma-facing mirrors, other optical elements?

Reliability of magnetic diagnostics?

ECE/reflectometry functionality?

Interferometry refraction/wavelength?

Use of bolometry, x-ray techniques?

CXRS and MSE techniques; capability for diagnostic neutral beam(s)?
Confined alpha-particles?
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Physics Input Needed prior to detailed
Diagnostic Design

 Will the new physics need the same high
resolutions as now in U.S.?

« What input will be needed for control
systems?

 What is needed for fluctuation (turbulence)
measurement?

 \WWhat level of detall iIs needed about the
particles?
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Provisional List of Diagnostics (1)

« Magnetic Measurements

— Rogowski Coils, Flux/voltage loops, Discrete Br, Bz coils, Saddle coils,
Diamagnetic loops, Halo current sensors, Hall effect sensors

« Current Density Profiles
— Motional Stark effect with DNB, Infrared polarimetry

« Electron Density and Temperature

— Thomson Scattering, ECE Heterodyne Radiometer, FIR interferometer,
Multichannel Interferometer, ECE Michelson interferometer, ECE Grating
Polychromator, Millimeter-wave Reflectometer

* lon Temperature

— Charge Exchange Spectroscopy with DNB, X-Ray Crystal Spectrometer,
Charge Exchange Neutral Analyzer (edge)

 Visible and Total Radiation

— Visible Survey Spectrometer, Visible Filterscopes, Visible Bremsstrahlung
Array, Bolometer Arrays, Plasma TV and Infrared TV

« Ultra Violet and X-Ray Radiation

— UV Survey Spectrometer, Hard X-ray detectors, Soft x-ray
Spectrometer, X-ray pulse height analysis %

PRINLETEN PLASMA
PHYSIIS LAEDRATORY

K.M. Young 1/17/01



Provisional List of Diagnostics (2)

MHD and Fluctuations

— Mirnov Coils, Locked-mode coils, Soft x-ray array, Beam emission
spectroscopy, Millimeter wave reflectometer, Collective scattering

* Particle Measurements and Diagnostic Neutral Beam

— Epithermal Neutron detectors, Multichannel Neutron Collimator, Neutron
Fluctuation detectors, Diagnostic Neutral Beam

« Charged Fusion Products
— Escaping Alpha Particle detectors, IR TV (shared with total radiation),
Collective Scattering (CO27?), a-CXRS, Knock-on neutron detectors
« Divertor Diagnostics

— Divertor IR TV, Visible Ha TV, UV Spectrometer, Divertor Bolometer Arrays,
Multichord visible spectrometer, Divertor Ha monitors, ASDEX-type Neutral
Pressure Gauges, Divertor Thomson Scattering, Penning Spectroscopy,
Divertor reflectometer

* Plasma Edge and Vacuum Diagnostics

— Thermocouples, Fixed Edge Probes, Fast Movable Edge Probes, Torus lon
Gauges, Residual Gas Analyzers, Glow Discharge Probes, Vacuum Vessel

lllumination F F Pl
%pnlnmnn PLASTIN
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Conclusions

* A compact advanced copper-coil tokamak, FKBE, can make

major contributions to fusion science studies leading ultimately
to fusion energy,

* but significant challenges faliagnostics
— radiation and other environmental impacts on components,
— demand for fine spatial resolution profile data for control,

— alpha-physics diagnostics: alpha-particles and their impact,
— limited funding.
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