Breaking the Mold for a (new?) (US-MFE) Strategy*

R.J. Fonck

24th Symposium on Fusion Engineering (SOFE)

Town Hall Meeting:

Accelerating the Development of Fusion Power

July 27, 2011 Chicago, IL

(* not my title...)

MY VIEWS ARE BIASED BY MY ASSUMPTIONS

- MFE progress towards fusion energy is more resourcelimited than knowledge-limited
- We cannot get to fusion energy with our present program funding
- The decision to significantly increase funding to realize fusion energy will be driven by external events

Fusion Power by Magnetic Fusion Program Plan July 1976

- · Logic IV became the basis for the MFE Act of 1980.
- The US Fusion Program evolved on to Logic I we never get there.

R&D PROGRAM OPERATING BUDGET AND LOCI OF DEMO OPERATING DATES FOR

- No one is going to fund fusion energy development because we say they should
- Our job is to prepare technically correct answers to: "can you do it now, how long, and how much?"
 - Not: "what do you need to develop those answers?"

ERDA - 76/110/1

It is time to Reposition How We Present the U.S. MFE Program

- Need to develop, and consistently make, the case that the U.S. MFE program can break out into a directed energy development program when desired
 - Show that the program can be put on path to "succeed" on the ITER ($Q \sim 10$) timescale
 - Success = requisite background work done to justify step to DEMO construction with "acceptable" risk
- Design and pursue a near-term program to support that direction
 - With the international program moving forward, the status quo
 will not hold...

PROGRESS IN FUSION SCIENCE MOTIVATES ADDRESSING MORE ENERGY-SPECIFIC ISSUES

Turbulence Understanding & Control

RJF SOFE 2011

Disruption Limits & Avoidance

ELM suppression

SCIENTIFIC PROGRESS AND ITER COMMITMENT MOTIVATE PROGRAM EVOLUTION

- Many studies have confirmed scientific progress and excellence
- ITER = the science of a high gain (Q~10) burning plasma
 - Reactor-scale plasma science: confinement; stability
 - Reactor-relevant technologies: SC magnets; Heating and Diagnostics; initial TBM tests, etc.
- ITER was claimed to be the "penultimate step to fusion energy"
- Our challenge: figure out how to make that so for the U.S.
 - What else has to be done in parallel with ITER to motivate construction of a fusion DEMO (agnostic to detailed features or who does it)?

CHALLENGES IN ADDITION TO ITER BP IDENTIFIED FOR MFE

- Fesac, ReNew, etc. as most recent assessments
- The Big 4 Themes
 - Demonstrating and exploring the burning plasma state
 - Creating predictable, high-performance steady-state plasmas
 - Taming the plasma-material interface
 - Harnessing fusion power
- Assuming sufficient progress in each of these areas, we can credibly argue that moving to DEMO is an acceptable risk
 - Devil in details of "acceptable" risk: will not be determined solely by fusion community

BROADENING THE FUSION PORTFOLIO TO ENABLE A FUTURE ENERGY DEVELOPMENT PROGRAM

- Need to evolve and be ready to motivate expansion from OS to include an energy development program
 - Recognize that leads for Themes 1 & 2 likely to reside in new and existing programs in international portfolio
 - Explore mods to ITER program to take more advantage of reactor scale?
 - Need to increase our emphasis on 3rd and 4th Themes to make case for readiness and position US program for future
- A <u>Fusion Nuclear Science & Engineering Program</u> (FNSEP)
 - PWI, materials, TBM, etc.
 - Fusion engineering education and development (critical weakness?)
 - "Out-of-pile" engineering science developments
 - Integrated D-T Fusion Nuclear Science Experiment/Facility
 - Future lead national facility

METRICS FOR SUCCESS OF AN FNSP ARE AVAILABLE FROM PAST & RECENT WORK...

FESAC "Gaps", ReNew:

What has to be done and how it could be done...

ARIES TRL analyses:

Impact of specific elements on end goal; elucidation of risks...

RJF SOFE 2011

US-MFE ROADMAP ELEMENTS

FDF

(FNSF-AT)

- US should aspire to leadership in new fusion frontiers
 - Themes/Challenges 3&4 as increasing focus: add FNSEP
 - In international context
 - · BP and ss covered by existing and new machines
 - Watch on materials development...
- Identify elements and possibility for acceleration
 - Accordion plan by resources
- Note activities growing out of community already...

 On-going plasma science and BP physics

FNSP

ST-CTF

(FNSF-ST)

(courtesy R. Stambaugh, FNS Pathways, 3/11/11)

FACILITY CONCEPTS ARE UNDER CONSIDERATION FOR FNSP AND BEYOND...

<u>Program</u> Mission:

Fill the gaps in ITER and existing fusion programs to support a FOAK DEMO construction with acceptable risk

FNSF-ST

FNSF-AT

(copper)

FNSF Objectives:

- 2-6 MW/m² neutron fluxes for long times
- Test/validate materials (low activation, high strength, high temperature, radiation resistant)
- Tritium breeding; self-sufficiency
- Produce high-grade process heat

Add:

Enable DEMO-class highperformance plasma research

FNSF-Pilot Plant(s)

Add:

- Generate net electricity
- Reactor maintenance schemes

Step risk Cost Schedule

A Fast Track Plan to Get to a Net Electric DEMO

DEMO design initiated by first plasma in ITER. DEMO construction triggered by Q=10 in ITER, first phase accomplishments in FNSF, and materials data on ODS Ferritic Steel. FNSF enables choice between two most promising blanket types for DEMO.

A Fusion Nuclear Science Facility Must Be a Research Device, Maintainable, Flexible, Re-configurable

GA FNSF-AT (FDF)

* A defining characteristic of device approaches

U.S. MFE MAJOR FACILITY ROADMAP FOR SUCCESS IN ITER TIMEFRAME

Major Out-of-Pile Material, TBM, etc.?

Present

ITER timeframe 2020 - 2035

Construct Decision 2025-2035

US MFE COMMMUNITY NEEDS TO MOVE NOW TO NEW TRAJECTORY

In international context

- Burning Plasmas and steady-state covered by existing/new machines
- US should step up and more aggressively address FNSE issues

Design, Roadmap, and Prioritization Studies Needed asap

- Goal: make credible case for fusion next step on the ITER timescale, confirming "penultimate step" designation
- Evaluate risks/costs/readiness/schedule to support priorities & decisions
- Deal with reality that facilities & resource allocations need to evolve soon
 - Acknowledge world program and opportunities

Explicit goals

- Near term: define and follow a program towards a fusion energy development program, first including more focus on FNSE issues
- Long-term: achieve science and engineering results to justify and motivate a DEMO construction decision on the ITER Q~10 timescale, if called for...

