Alternative Approaches to Ignition in Tokamaks

M.G. Bell

Princeton Plasma Physics Laboratory P.O. Box 451, Princeton, N.J. 08543-0451 *with contributions from* R.V. Budny, D.R. Ernst, D.M. Meade, D.R. Mikkelsen

Topics

- What have we learned about ion confinement from tokamak experiments?
 - 25 years of non-DT experiments across a wide range of machines
 - 4 machine-years of DT experiments in TFTR and JET
- Are there ways to exploit this experience in a next step?

Conventional Tokamaks Confine Energetic Ions Well

- Neutral beam and minority ICRF heating depends on this
 - PLT first demonstrated hot-ion ($T_i \sim 7 \text{keV}$) operation with NBI (1978)
 - very successful in many tokamaks
- J.F. Clarke investigated ignition with $T_1 > T_e$ [Nucl. Fusion **20** (1980) 563]
 - neoclassical ions: $\tau_{Ei}[s] = 0.73 I_p[MA]^2 T_I[keV]^{1/2} n_i[10^{20}m^{-3}]^{-1}$
 - Alcator scaling for electrons: $\tau_{Ee}[s] = 0.76 \text{ a}[m]^2 \text{ n}_e[10^{20} \text{m}^{-3}]$
 - ⇒ n τ for ignition reduced by factor ~2 with T_i ≈ 30keV; T_e ≈ 25keV
- Discovery of L-mode scaling in 1980's quelled enthusiasm
 - both electrons and ions worse than originally hoped but
- Hot-ion modes continued to produce the best fusion performance
 - L-mode, H-mode, ERS/ERS/OS; limiter/divertor
- DT experiments showed good confinement of fusion alpha-particles

Comparison of Achieved Plasma Parameters with ITER

TFTR

Central values	ITER ¹	TFTR	JET ²	JT-60U ³
Plasma composition	DT	DT	DT	D
Mode	ELMy H-mode	Supershot	Hot-ion ELM- free H-mode	$\begin{array}{c} \text{Reversed-shear} \\ \text{High-}\beta_{\text{P}} \end{array}$
n _e [10 ²⁰ m ⁻³]	1.3	1.02	0.42	0.85
n _{DT} [10 ²⁰ m ⁻³]	0.8	0.60	0.35	0.48 (n _i)
n _{He} [10 ²⁰ m ⁻³]	0.2	0.002		
T _i [keV]	19	40	28	16
T _e [keV]	21	13	14	7
Z _{eff}	1.8	1.8	2.1	3.2
p _{tot} [MPa]	0.8	0.75	0.37	0.22
P_{α} [MWm ⁻³] (source)	0.5	0.45	0.14	
P _{aux} [MWm ⁻³]	0	3.4	0.8	0.3

¹ ITER Final Design Review Document

² A. Gibson *et al.* Phys. Plasmas **5** (1998) 1839

³ S. Ishida *et al.*, paper IAEA-CN-69/OV1/1, IAEA Fusion Energy Conference, Yokohama, Oct. 1998

• Confinement and pulse length are the remaining issues!

DT Plasmas are NOT the Same as Their D Progenitors

• There was a pronounced isotope scaling of confinement in TFTR

• JET H-modes showed positive mass scaling of pedestal, *negative in core*

Hot Ion Plasmas in TFTR Showed a Favorable T_i Scaling

TFTR

- Trends are not consistent with naïve Bohm or gyro-Bohm scaling but
- Can be modeled by invoking turbulence suppression by E×B shear

Isotope Scaling Changed Constraints on DT Operation

- TRANSP had predicted a DT:DD power ratio of ~180 at constant T_i (1990)
- Needed to operate at higher I_p , B_T to accommodate higher P_{NB} , T_i

Substantial Direct Alpha Heating of lons for T_e > 15 keV

Good Ion Confinement Produces Hot-Ions at Ignition

• n_{DT} : n_{H} : n_{He} : n_{C} = 0.80 : 0.05 : 0.05 : 0.01 (based on TFTR experience)

- P_{α} and $P_{ie} \propto n^2 \Rightarrow T_1/T_e$ independent of density at ignition

• Cannot simultaneously minimize $n\tau$ and β_{tot} at ignition

Regime Expands for High-Q with Preferential Ion Heating

Convective Losses Dominate in Core of Supershots

Normalized minor radius

- Ion thermal flux: $q_i = -n_i \chi_i k \nabla T_i + C k T_i \Gamma_i$; Γ_i = particle flux
 - $C = \frac{5}{2}$ for uniform losses (= average particle energy + p.dV work)
 - $C = \frac{3}{2}$ for supershots consistent with energy dependence of D_i
- Convective losses probably too high in standard supershots to ignite, but
 - Balance of conduction and convection in core not well determined

TFTR

ERS Plasmas Combine Low $\chi_{\rm I}$ with Greatly Reduced D $_{\rm e}$

TFTR

- Flux balance effective χ : q = n· χ_{eff} · ∇ T (includes convected heat flow)
- χ_e reduced near q_{min} but *increased* inside

Construct Simple 1-D Solution for a Hot-Ion Q = 10 Plasma

• $<P_{fus}> \approx 0.45 \text{ MWm}^{-3}$ (ITER: 0.75); $\tau_{E} = 2.7 \text{ s}$ (ITER: 5.8 s for ignition)

Embodiment of a Hot-Ion Q = 10 Plasma

- From 1-D calculation: = 2/3 ($<P_{\alpha}> + <P_{aux}>$) $\tau_{E} = 0.25$ MPa
- Choose moderately conservative assumptions
 - Inverse aspect ratio: $\varepsilon = 1/3$
 - Elongation: $b/a = \kappa = 1.6$
 - Engineering safety factor: $\mathbf{q}_{e} = (\pi/\mu_{0}) (1 + \kappa^{2}) \varepsilon a B / I = 3$
 - Troyon-normalized- β : $\beta_N = 10^8 < \beta > a B / I = 80 \pi a / B I = 2$
- Calculate
 - Toroidal field: B = 5.6 T
 - Ratio of plasma current to minor radius: I / a = 5.5 MAm⁻¹
 - For a = 1.5m, R = 4.5m, I = 8.2MA \Rightarrow P_{fus} = 150MW, P_{aux} = 15MW
 - $H_{\rm ITER-89P} = 3.4$
 - Would need $\chi_i \sim 0.2 \text{ m}^2 \text{s}^{-1}$ and $\chi_e \sim 0.8 \text{ m}^2 \text{s}^{-1}$ for r/a < 0.6
- This is within the bounds of what might be achievable

Conclusions and Future Directions

- We have to use DT plasmas ("the real thing") if we are interested in fusion
- We should re-examine approaches to ignition in regimes than the "traditional" ELMy H-mode route
- Hot-ion regimes have produced the best performance in all large tokamaks and are not incompatible with high-Q and, possibly, ignition in DT
- It is quite conceivable that a hot-ion mode is a stable self-organized state of a predominantly self-heated tokamak plasma
- In the meantime, study hot-ion regimes in large tokamaks
 - mechanism: sheared flow, $T_i/T_e > 1$, L_n
 - is strong central fueling necessary?
 - MHD and TAE stability margins *c* optimize r.m.s. pressure
 - size scaling in comparable regimes
 - put effort into controlling what matters
 - investigate alpha channeling

 \leftarrow theory progress

- \leftarrow reduced D regimes
- \leftarrow controlled experiments \leftarrow edge control
 - \leftarrow improves prospects

