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Edge pedestal scalings very uncertain, but most favor
higher-field designs with stronger shaping...

• Wide range of theory & expt. evidence: ∆/R ∝ ρ∗θ (JT-60U, JET), ρ
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(very interesting DIII-D evidence of a second stable edge, which would have a
more favorable scaling to reactors)
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• Making two assumptions (and use Uckan formula for q95RIp/(Ba2)):

1. Width ∆ ∝ √
ερθ ∝ ρq/(κ

√
ε) (scaling preferred by two largest tokamaks)

2. stability limit ∂β/∂r ∝ [1 + κ2(1 + 10δ2)]/Rq2 (rough fit to JT-60U, Koide et.al.,
Phys. Plasmas 4, 1623 (1997), other expts.), get:
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(Hammett, Dorland, Kotschenreuther, Beer, PPPL-3360 (1999))



JET data supports ∆ ∝ ρbanana & ∂β/∂r ∝ Rq2 model.



JT-60U showed the first evidence for the ∆ ∝ ρbanana,
dβ/dr ∝ 1/(Rq2) model. Also find a strong triangularity

dependence.



Some of the new reactor designs may have
significantly improved pedestal temperatures

Using this Tped formula (with a ∆ ∝ ρθ assumption), and other pedestal scalings
also, to scale from JET to some proposed reactor designs:
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Rqρ
JET-norm 2.92 0.91 2.35 2.55 0.4 0.40 ∼ 1 1.61 .17 2.1 2.1 2.1
ITER-96 8.14 2.80 5.68 21.0 1.3 1.52 1 1.60 .24 0.20∗ 0.18∗ 1.5∗
lower nped 8.14 2.80 5.68 21.0 0.6 0.70 .70 1.60 .24 0.94∗ 0.83∗ 4.2∗
ITER-FEAT 6.20 2.00 5.30 15.1 0.58 0.48 .65 1.70 .33 2.9 2.1 7.4
FIRE 2.0 0.53 10.0 6.44 3.6 0.48 .65 1.77 .40 4.8 3.0 6.7

∗ should add (nT )sol/nped which could be as high as ∼ 0.5 keV.

Encouraging that even with the pessimistic pedestal scaling ( ∆ ∝ ρθ), it may be
possible to get high pedestal temperatures by going to stronger plasma shap-
ing, higher field, smaller size, and modest density peaking.

(Hammett, Dorland, Kotschenreuther, Beer, PPPL-3360 (1999))



Sensitivity of Fusion Power to Some Assumptions

Baseline assumptions:

IFS-PPPL model for χi,e modified with ∆(R/LTcrit) = 2 to roughly fit Dimits shift
seen in gyrokinetic simulations.

〈ne〉/nGreenwald = 0.74. Modest density peaking, n0/〈ne〉 = 1.18, nped/〈ne〉 = 0.65.
n(r) = (n0 − nped)(1− (r/a)2)0.5 + nped.

Paux adjusted to keep Pnet ≥ 1.2P99L→H = 30 MW for baseline FIRE, =57 MW for
baseline ITER-FEAT.

n0 nped Tped Pfusion Q Ti0 Paux

1020/m3 1020/m3 keV MW keV MW
FIRE baseline case 6.75 3.6 4.8 264 620.0 18.6 0

↓ Tped 30% 6.75 3.6 3.4 142 9.7 15.3 14
flatten n(r) 3.60 3.6 4.8 117 22.0 21.7 5
original IFS-PPPL 6.75 3.6 4.8 155 13.0 12.9 11
original IFS-PPPL ↓ Tped 30% 6.75 3.6 3.4 69 2.6 10.2 26

ITER-FEAT baseline case 1.09 0.58 2.9 192 5.8 18.3 32
↓ Tped 30% 1.09 0.58 2.0 111 2.4 15.5 45

ITER-FEAT with FIRE Tped 1.09 0.58 4.8 381 816.0 23.5 0
ITER-FEAT with FIRE Tped ↓ 30% 1.09 0.58 3.4 241 10.1 19.8 23



CAVEATS, IMPLICATIONS

• Dimits shift ∆(R/LTrit) 6= constant, should depend on parameters.
Core neoclassical E ×B shear ignored (gets weaker at smaller ρ∗).

• Edge pedestal scalings very uncertain.

• Tpedestal ∝ (nGreenwald/nped)
2 model has no explicit power depen-

dence, is only a guideline limit for certain regimes (first-stability-
limited type-I ELMs). Assumes P > PLH threshold. Ignores power
needed to sustain pedestal against neoclassical transport, resid-
ual edge turbulence, ELMs, etc. Exploring extensions to include ν∗
dependence of bootstrap current, ...

• To study edge turbulence & transport barriers scalings, need flex-
ibility to scan pedestal density over a wide range: high nGr, pellet
injection, divertor pumping.

• Compact size and strong shaping of FIRE gives high nGr & im-
proved edge stability & high Tpedestal potential. Lower bound on nped

needed for divertor survival appears to be easily satisified in FIRE.



MORE CAVEATS, FUTURE WORK

Many caveats, contradictory theories, contradictory experiments:
• edge very complicated, range of theories, most have
width ∆ ∝ ρ2/3−1.
• largest machines (JT-60U, JET) support “standard” model of
width ∆ ∝ ρ and gradient near the ideal MHD limit
• others (DIII-D) support ∆ independent of ρ and/or in second sta-
bility (boostrap current in pedestal region important in DIII-D?). C-
MOD EDA differs from ELMy behaviour on other machines, Neu-
trals important in C-MOD?
• Useful cross-machine database being developed (Sugihara et.al.,
EPS99, ITER H-mode Edge Pedestal Expert Group Meeting, March
2000). (Sugihara uses different scaling dp/dr ∝ (1 + 9.26δ3.4).)

• Detailed edge turbulence simulations rapidly becoming more re-
alistic (Xu and Cohen (LLNL), Rogers and Drake (U. Md.), Scott,
Jenko, Zeiler et.al. (Garching))
• Even with pessimistic ∆ ∝ ρ model, newer reactor designs get
significantly improved pedestal temperatures by ↑ field, triangular-
ity, and elongation (which increase Greenwald density and edge
stability), and by assuming a modest density peaking


