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PRESENT UNDERSTANDING OF MHD STABILITY LIMITS IS
SUFFICIENT TO DESIGN A BURNING PLASMA EXPERIMENT

® |deal MHD stability limits are well understood and predictable
— Upper limit to plasma stability

— Credible foundation for design of next-step devices

® Non-ideal effects introduce greater uncertainty

— Resistivity, finite Larmor radius, energetic ions, ...

® Resistive instabilities are less predictable but may be avoidable
— Neoclassical tearing modes can be avoided transiently by profile modification

— Recent experiments have suppressed NTMs with localized current drive
® Steady operation very near stability limits has been demonstrated

® Burning plasma experiments go beyond present experience with MHD stability,
and present new scientific challenges
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FULL STABILIZATION OF NTM OBTAINED WITH MODEST ECH POWER
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STEADY STATE HIGH PERFORMANCE DISCHARGES CAN BE ACHIEVED
USING UNDERSTANDING OF STABILITY LIMITS AND DISCHARGE CONTROL

ET0% 1, (WA) — -
® [3 controlled to 3
remain ~20% below {Pyg) (MW) al

predicted RWM limit

— 3 also kept 5%
below experimental

211 NTM B limit

@ Discharge continued

in steady state until
beam termination

_—y
o

® No sawteeth
—qp21

n =2 Mirnov Ampi. (G)

2000 4000 6000 8000
Time (ms)

o A O O M O & OO N O
TTT[1 TTT[T T[T FT T[T [T

d UL

NATIONAL FUSION FACILITY 319-00 jy

SSSSSSSS



MSE shows J(r) profile has reached resistive equilibrium with g, ~1.05
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WHAT DISTINGUISHES A BURNING PLASMA FROM
EXISTING EXPERIMENTS?

® Self-heating

— Less external control over profiles (p, j, €2)

® Energetic particle effects

— Large isotropic population of fast ions

® New ranges of dimensionless parameters
—  pi*=pila~TV2/aB
—  S=1phR ~aBTY2InY2z4

—  V*=vijlewpj ~ NQRZeff/e3/2T2

DIlI-D C-MOD JT-60U JET FIRE IGNITOR  ARIES-RS ITER-FEAT ITER-FDR

aB (m-T) 1.3 1.7 35 4.3 5.3 6.1 10 11 16
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EXISTING EXPERIMENTS ARE SUFFICIENT TO INVESTIGATE MANY
ISSUES OF MHD STABILITY

® |deal MHD stability limits
— Profile dependence
— Shape dependence

— Aspect ratio dependence
® Feedback stabilization of RWM
® ECCD stabilization of NTM

® Edge-driven instabilities
— |dentification of instability

— Dependence on bootstrap current

® Stability with non-inductively driven current profiles
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BURNING PLASMA-SIZE EXPERIMENTS (WITHOUT ALPHA HEATING) ARE
REQUIRED TO INVESTIGATE SCALING OF MHD STABILITY PHYSICS

® NTM beta limit scaling
— Threshold island size decreases with decreasing pl*
— Seed island size decreases with increasing S

® Edge-driven instabilities
— Edge gradients determine stability limit
— Pedestal width determines coupling to core
— Scaling of edge parameters is not well understood

® Resistive wall mode stability
— Rotation frequency required for stabilization may increase with S (2 ta ~ 0.05)

® Runaway avalanche during disruption
— Number of e-foldings increases with plasma current
— Runaway electron current multiplication
> 102at Iy = 2 MA
> 106at Ip =5 MA
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NTM THRESHOLD SCALES LINEARLY
WITH NORMALIZED ION LARMOR RADIUS

@ But scaling of Bn/pj* with collisionality is not consistent between machines
— Possible additional dependence on p;* or S

® [ o< pj f(v) is consistent with polarization/inertial model of Wilson et al.
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SAWTOOTH INDUCED SEED ISLANDS SCALE
INVERSELY WITH MAGNETIC REYNOLD'S NUMBER

® Seed islands estimated from m/n = 3/2 Mirnov level upon excitation
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® Best fit has Wgeeg/r o< $0-4620.05 correl r =-0.74 consistent with
dynamical coupling model of Hegna et al.
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MPa/(W/radian),MA/m”

EDGE STABILITY AND ELM CHARACTER DEPEND
CRITICALLY ON COLLISIONALITY
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ELM SIZE CORRELATES WITH RADIAL WIDTH
OF PREDICTED UNSTABLE INTERMEDIATE n KINK MODE

® Highly localized instability
computed from GATO
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A BURNING PLASMA (STRONG ALPHA HEATING) IS NEEDED TO
INVESTIGATE KEY ISSUES OF MHD STABILITY

® Energetic particle interactions with MHD modes (sawteeth, fishbones, TAE,
ballooning modes, etc.)

— Stabilization or destabilization of MHD modes by alphas

— Enhanced transport of alphas by MHD modes

® Self-heating (Pg, >> Pexternal = Q = 10)
— Stability limits with pressure profiles determined by alpha heating

— Plasma rotation with little or no external momentum input (RWM stability,
mode locking, error field sensitivity)

Q~w~Tla’B ?

® Steady-state operation (T > Tcg ~ a213/ 21Zef)

—  Stability limits with self-consistent current density and pressure profiles
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STABILITY LIMIT DEPENDS STRONGLY ON
THE FORM OF THE PRESSURE PROFILE
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ROTATION DECELERATES ABOVE THE NO-WALL {3 LIMIT
(EVEN WITH LARGE TORQUE)
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Two competing models are being

investigated

— Gimblett and Hastie torque balance
model with marginally unstable
RWM predicts qualitative behavior

— New data is consistent with resonant
amplification of static error fields
by marginally stable RWM
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CONCLUSIONS

® Some issues of MHD stability require burning-plasma parameters to investigate
— NTM beta limit scaling
— Edge-driven instabilities
— Resistive wall stabilization

— Disruption scaling (runaway avalanche)

® Some key issues of MHD stability can only be addressed with strong alpha heating
— Energetic alpha interactions with MHD modes
—  Stability with profiles determined by self-heating (t >> 1)
— Stability with self-heating and relaxed current density profile (t >> TcR)

® Many of the issues requiring a burning plasma are not purely MHD stability issues
but issues of integration (transport, profile control, burn control, etc.)
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INTEGRATION OF SEPARATE ELEMENTS MAY BE THE MOST
IMPORTANT MISSION FOR A BURNING PLASMA EXPERIMENT

® Strong coupling of transport, heating, and stability leads to a more “self-
organized” plasma than in a short-pulse, externally heated tokamak

— Pressure — Fusion — Alphaheat —  Thermal — Pressure
profile rate deposition transport profile

— Pressure — Bootstrap — Current —  Thermal — Pressure
profile current profile transport profile

® MHD instabilities can intervene in these loops:

—  Pressure, current density, and fast ion —  Instabilites — Modification
profiles of profiles

® |nvestigation of such a complex, non-linear system represents a scientific
challenge, and may yield some surprises

RECOMMENDATION: A “next step” burning plasma experiment is needed as the only
way to address this challenge
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