Role of Advanced-Fuel and Innovative Concept Fusion in the Nuclear Renaissance

> John F. Santarius Fusion Technology Institute University of Wisconsin

APS Division of Plasma Physics Meeting Meeting Philadelphia October 31, 2006

- Fusion development requires physics, engineering, safety, and environmental progress.
- D-T tokamaks dominate present fusion development because of their physics advantages.
- Assuming modest plasma physics progress, what other fusion options emerge?
- This talk will examine advanced fuels and innovative fusion concepts with respect to all four development areas.

Main Thesis of This Talk: D-³He Fuel Could Lower R&D Costs

• Engineering R&D costs typically dominate physics R&D costs.

Physics Readiness (transport, disruptions, current drive, fueling, impurities, profiles)

Fusion Technology Institute

Advanced Fusion Fuels Greatly Reduce Neutron Production

2nd generation fuel:

$$D + {}^{3}He \rightarrow p (14.68 \text{ MeV}) + {}^{4}He (3.67 \text{ MeV})$$

3rd generation fuels:

 $p + {}^{11}B \rightarrow 3 {}^{4}He (8.68 \text{ MeV})$

D-³He Fuel Faces Larger Physics Obstacles than D-T

Ignition contours against bremsstrahlung

- D-³He, compared to D-T, requires:
 - Minimum factor of ~6 increase in ignition temperature,
 - Minimum factor of ~8 n_eτ_E increase,
 - Minimum Tnτ increase of ~50 times (³He:D density = 1:2).
- D-³He fusion relies on continued plasma physics progress that improves modestly over the impressive physics development already achieved.

D-³He Needs a Factor of ~80 Above D-T Fusion Power Densities

- However, note that:
 - Neutron wall loads limit
 D-T fueled innovative concepts
 well before they reach β (plasma pressure / magnetic-field
 pressure) or B-field limits.
 - Fusion power density scales as β² B⁴.
 - Only for concepts with very low limits on β of 5-10% do
 optimized reactor design B-fields approach the technological limits on the magnet coils.

Relative Power Density at Constant β

D-³He Could Have a Power Density at Least as High as D-T Power Density

- D-T fueled FRC reactors (β ~85%) optimize at B \leq 3 T.
- Superconducting magnets can attain at least 20 T, especially in solenoidal geometry.
- Fusion power density scales as β² B⁴, allowing concepts with high values of these parameters to increase their power density to neutron wall load or surface heat load limits.

Power density improves greatly through increasing β and B-field

Power density relative to a D-T FRC with β =0.85 and B=3 T

For ³He Fuel, Think Outside the Box

- ~400 kg ³He accessible on Earth
 - ~8 GW-y fusion energy for R&D
- ~10⁹ kg ³He on lunar surface for 21st century
 - $> \sim 1000$ y world energy supply
- ~10²³ kg ³He in gas-giant planets for indefinite future
 - ~10¹⁷ y of world energy supply

Escher, Other World, 1947

Well-Developed Terrestrial Technology Gives Access to ~10⁹ kg of Lunar ³He

•One miner: >Produces $33 \text{ kg} ^{3}\text{He}$ plus many tonnes of useful volatiles yearly. >Mines 1 km² lunar area per year to 3 m depth.

L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* **10**, 167 (1986)

JFS

Fusion Technology Institute

2006

Fusion Technology Institute

D-³He Fuel Generally Gives Easier Engineering and Safety

- Reduced neutron flux allows
 - Smaller radiation shields
 - Smaller magnets
 - Permanent first wall and shield
 - Easier maintenance
- Increased charged-particle flux allows direct energy conversion
- Unburned tritium will be a proliferation and safety issue

Linear Geometry Provides Solution to Handling Charged-Particle Surface Heat Flux

- Charged-particle power transports from internal plasmoid (in an FRC or spheromak) to edge region and then out ends of fusion core.
- Expanded flux tube in end chamber reduces heat and particle fluxes.
- Mainly bremsstrahlung power contributes to first-wall surface heat.
- Relatively small peaking factor along axis for bremsstrahlung and neutrons.

Field-Reversed Configuration (FRC) Matches D-³He Fuel Well and Would Be Attractive for Fusion Power

From Univ. of Washington web page for the Star Thrust Experiment (STX): www.aa.washington.edu/AERP/RPPL/STX.html

JFS

ARTEMIS Field-Reversed Configuration (D-³He, Momota, et al., NIFS, 1992)

Some Candidate Advanced Fusion Concepts (Not Exclusive)

Spherical Torus (ST)

Spheromak

Fusion Technology Institute

Dipole

The Dipole Configuration Offers a Relatively Simple Design That an MIT/Columbia Team Has Begun Testing

Direct Conversion to Electricity Can Give 60-80% Efficiency

• Experiment and theory agreed within 2%.

Fusion Technology Institute

The Low Radiation Damage in D-³He Reactors Allows Permanent First Walls and Shields to be Designed

Fusion Technology Institute

Radioactive Waste Disposal is Much Easier for D-3He Reactors than for D-T Reactors

Fusion Technology Institute

Proliferation-Resistant D-³He Power Plant May Be Possible

THE UNIVERSITY

Focused R&D Could Develop D-³He Fusion Quickly, *If* the Will Exists

- In parallel, experiment on several concepts with multiple devices.
 - ➢ Winnow.
 - > Provide substantial power and diagnostic capabilities.
- Incorporate existing terrestrial fusion research program where possible.

YEAR																				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
Proof-of-Principle Experiments (\$240 M)																				
3 experiments																				
3 experiments																				
3 experiments																				
3 experiments																				
				Ex	Integ perim	rated ents	Test (\$300	M)												
Existing Proof-of- Principle Experiments			1 experiment																	
			Î		1 ex	perin														
					1 experiment															
								Burning Plasma Experiments (\$2400 M)												
								1 experiment												
								1 experiment												
														Demo (\$3500 M)						
															1 experiment					

• Total program cost ~ 6 B\$; \$10B with contingency.

Broader Perspectives

- Nuclear power in all controlled forms possesses some advantages over burning fossil fuels.
- In the context of the energy big-picture, either D-T or D-³He fusion development costs would be a small fraction of the cost of a Middle-East war.
- True energy dependence would derive from D-³He fusion.

Conclusions

- Burning D-³He fuel requires substantial, continued progress in plasma physics and high-β concepts.
- D-³He fusion's attractive engineering, safety, and environmental characteristics should dramatically shorten its development path if the already impressive plasma physics progress continues.
- ³He fuel for this century must come from the Moon, but Solar-System ³He resources are essentially inexhaustible.

References

- L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* 10, 167 (1986).
- L.J. Wittenberg, E.N. Cameron, G.L. Kulcinski, S.H. Ott, J.F. Santarius, G.I. Sviatoslavsky, I.N. Sviatoslavsky, and H.E. Thompson, "A Review of Helium-3 Resources and Acquisition for Use as Fusion Fuel," *Fusion Technology* 21, 2230 (1992).
- J.F. Santarius, "Advanced-Fuel Heat Flux, Power Density, and Direct Conversion Issues," *Transactions of Fusion Technology* **27**, 567 (1995).
- J.F. Santarius, G.L. Kulcinski, L.A. El-Guebaly, and H.Y. Khater, "Could Advanced Fusion Fuels Be Used with Today's Technology?", *Journal of Fusion Energy* 17, 33 (1998).
- J.F. Santarius, G.L. Kulcinski, and L.A. El-Guebaly, "A Passively Proliferation-Proof Fusion Power Plant," *Fusion Science and Technology* **44**, 289 (2003).