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These are exciting times for inertial confinement fusion

I1768

•	 Experiments	on	Nova	(previously)	and	OMEGA	are	developing	 
the	target-physics	understanding.

•	 Recent	OMEGA	experiments	have	demonstrated	ignition-relevant	 
areal densities.

•	 New	concepts	will	extend	ignition	possibilities.

•	 This	talk	will	review	direct-drive	 
ICF	progress.*

•	 After	35	years,	the	ICF	community	 
is	ready	to	exploit	advances	 
in	physics	understanding	and	drivers,	 
leading	to	ignition	experiments	on	the	 
National Ignition Facility (NIF).

Summary

*More	ICF,	see	Lindl	(SR1.00001).
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Ablation	is	used	to	generate	the	extreme	pressures	required	
to	compress	a	fusion	capsule	to	ignition	conditions

S5o

“Hot-spot”	ignition	requires	the	core	temperature	to	be	at	least	
10	keV	and	the	core	fuel	areal	density	to	exceed	~300	mg/cm2.
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A	“Lawson’s	criterion”	in	terms	of	burn-averaged	tR and Ti 
shows	the	requirements	for	ignition

I1770

•	 Simple	scaling	relations	for	ignition	condition	from	Zhou	et al.*	
and Herrmann et al.**

•	 Fitting	the	results	of	1-D	simulations	
with	Gain	= 1 yields an ignition 
condition	that	depends	on	the	 
burn-averaged tR and ion 
temperature	without	alpha	
deposition.
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Both Ti and tR	can	be	measured	experimentally.

•	 For	sub-ignited	implosions	 
Ti(no–a) b Ti

1-D marginal ignition

Ignition and gain

LILAC fit
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  R.	Betti	and	C.	Zhou	(CO5.00001).
	*	C.	Zhou	and	R.	Betti,	Phys.	Plasmas	14,	072703	(2007).
**	M.	C.Herrmann,	M.	Tabak,	and	J.	D.	Lindl,	Nucl.	Fusion	41, 99 (2001).



The	fundamental	physics	of	direct-	and	indirect-drive	 
ICF	implosions	is	the	same

E6426o

•	 Energy	coupling
•	 Drive	uniformity
•	 Hydrodynamic	instabilities
•	 Compressibility

Key	physics	issues	are	common	to	both

Direct-drive target X-ray-drive target

Capsule

Laser beams Hohlraum using
a cylindrical high-Z case

Laser
(or ion)
beams

Direct-drive	cryogenic	implosions	provide	essential	
information	for	ICF	physics.



The 1.8-MJ	National	Ignition	Facility	(NIF)	will	
demonstrate ICF ignition and modest energy gain

TC4680m

Under construction
and beginning 
experiments

at LLNL

OMEGA
(LLE) 

Relative 
size

240 ft

OMEGA	experiments	are	integral	to	an	ignition	
demonstration on the NIF.



The	NIF	is	on	track	for	completion	in	FY09

I1785

120 main laser beams
operationally

qualified
October	31,	2007

NIF status:
94%	complete
4642	LRU’s	installed

World’s	highest	energy
laser	–	2.5	MJ,	1~



80 m

The OMEGA laser is designed to achieve high irradiation 
uniformity	with	flexible	pulse-shaping	capability

TC2998s

•	 60	beams
•		~30-kJ	UV	on	target
•		1%	to	2%	irradiation	nonuniformity
•		Flexible	pulse	shaping
•		Short	shot	cycle	(1 h)

Fully instrumented
Successfully	operated	 
for 10 years 
1500	target	shots/year



Laser-beam smoothing is critical to ICF ignition

I1771
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1 Y.	Kato	et al., Phys. Rev. Lett. 53,	1057	(1984);
 Y.	Lin,	T.	J.	Kessler,	and	G.	N.	Lawrence, 
	 Opt.	Lett.	20, 764 (1995).
2 S.	Skupsky	et al.,	J.	Appl.	Phys.	66,	3456	(1989).
3	T. R. Boehly et al.,	J.	Appl.	Phys.	85,	3444	(1999).



Ignition	requires	smooth	cryogenic	DT	targets

I1740c

•	 Thick	(>50	nm)	DT	ice	layers	are	required	for	ignition.

•	 b-layered	50:50	DT	cryogenic	targets	have	measured	ice-roughness	
nonuniformities <1-nm	rms,	meeting	ignition	specifications.

Multiple	views	are	essential	for	full	characterization.

Shadowgraph	image	
of a cryogenic DT target 

(~100-nm-thick	layer)

Ice-surface reconstruction
showing	0.72-nm rms (48	views) 

Top	view Bottom	view
Shot 44848

0 1–1

Deviations from
sphericity	(nm)

2x20996
2y20997

Ice-surface roughness:
0.47-nm	rms	in	a	single	view

D. R. Harding (YO5.00001).
D.	R.	Harding,	to	be	published	in	IFSA 2007.



About	80%	of	the	DT	capsules	created	to	date
have	produced	layers	with	sub-1-nm rms roughness

E15043d

Inner-ice-surface roughness •	 High-mode	(ℓ > 20)
 roughness is minimal for   
	 “single-crystal”	layers

•	 Low-mode	roughness
 (ℓ < 6) is due to
 asymmetries in the
	 triple-point	isotherm

•	 Mid-mode	roughness
 (6 < ℓ < 20)	is	likely	related			
 to outer-surface features   
 (glue	for	silks)

•	 The best layers are  
	 achieved	at	the	triple	point

DT	layer	quality	meets	ignition	requirements.

 nm rms (ℓ > 10)
 1.00 (0.25)
 0.78 (0.19)
 0.92 (0.25)
 0.91 (0.30)
 0.72 (0.22)
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T. C. Sangster et al., Phys. Plasmas 14,	058101	(2007).



LLE	has	learned	how	to	reliably	field	 
cryogenic	capsules

T2364a

•	 Deuterium	implosion	experiments	began	in	2001

  – three-day fill, cool, and layer cycle

	 	 –	 provide	up	to	eight	cryogenic	targets	per	week

	 	 –	 imploded	139	D2 targets

•	 Tritium	implosion	experiments	began	in	2006

	 	 –	 targets	are	filled	by	permeation	(no fill tube);	requires	6000	Ci	T2

	 	 –	 safe	operation:	facility	emissions	<3	Ci/yr

	 	 –	 imploded	35	cryogenic	DT	targets	(D:T,	45:55)

Improvements	in	the	ice-layer	quality	and	target	position
have	proceeded	in	parallel	with	implosion	experiments.



The	fuel	areal	density	and	hot-spot	ion	temperature	
determine	ignition	performance

I1776

•	 Areal	density	(tR)
	 	 –	 shock	timing	and	strength
	 	 –	 preheat
	 	 –	 compressibility
  – hydrodynamic instabilities

•	 Ion	temperature	(Ti)
	 	 –	 implosion	velocity
  – hydrodynamic instabilities
	 	 –	 absorption/drive	coupling

Our strategy is to first increase tR and then Ti



The	laser	power	is	tailored	to	drive	the	target	 
on	a	low	fuel	adiabat,	including	adiabat	shaping*

I1778

•	 High	outer	a	reduces	the	RTI	growth	rates	through	higher	ablation	velocity

ICF ignition targets have ain ~ 1	to	3,	aout ~ 3	to	6,	and	aavg ~	2	to	3.
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Shell

Shock	Timing

*V.	N.	Goncharov	et al., Phys. Plasmas 10, 1906 (2003).
†H.	Takabe	et al., Phys. Fluids 28,	3676	(1985).
‡W.	K.	Levedahl	and	J.	D.	Lindl,	Nucl.	Fusion	37,	165	(1997).

•	 High	GaH	increases	the	shell	thickness	and	reduces	feedthrough,	D ~ GaH0.6

•	 Low	inner	a	reduces	the	shell	kinetic	energy	required	for	ignition,	 ~Eign in
8a .1 ‡

/ ~. kg k k VV 20 9 3 .
RTI outa a

0 6-c r m a= =†



Shock	Timing

The	shock	and	isentropic	compression	must	be	precisely	
timed	to	reach	the	areal	density	required	for	ignition

TC7809b
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V.	N.	Goncharov	(GI1.00001).

•	 Accurate	shock	and	compression	wave	timing	sets	 
	 the	proper	ain, tR ~ ain
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Shock	Timing

A	nonlocal	model	is	required	to	correctly	predict	
electron	thermal	transport

TC7863a

•		 A	more	accurate	model	based	on	the	solution	of	the	Fokker–Planck	
equation	predicts	a	time-dependent	flux	limiter.

•		 Flux	limiter:	q = min
–ldT

f: flux	limiter

•	 Previously,	f = const. (~0.06)	was	used	based	 
on	heuristic	and	experimental	observations
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Peak intensity (1014 W/cm2)
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Accurate	modeling	of	electron	thermal	transport	 
is	crucial	for	shock	timing	and	setting	the	shell	adiabat

E15979a

Nonlocal	model	explains	
early-time	absorption

Shock	Timing

*W.	Seka	(GI1.00003).



The	fuel	areal	density	and	hot-spot	ion	temperature	
determine	the	compression	performance	of	ICF	targets

I1776a

•	 Precise	pulse	shaping,	including	a	picket,	sets	the	target	 
on	the	appropriate	adiabat	 	

•	 Current	experiments	have	demonstrated	ignition-relevant	
areal densities  

	 	 –	 shock	timing	and	strength
  – preheat
  – compressibility
  – hydrodynamic instabilities

•	 Future	experiments	will	increase	the	ion	temperature
	 	 –	 implosion	velocity
  – hydrodynamic instabilities
	 	 –	 absorption/drive	coupling

Understanding	cryogenic	dynamics	is	a	key	 
to successful ICF ignition.

Areal Density



Implosions	demonstrate	compression	of	cryogenic	fuel	 
to ignition-relevant areal densities

T2365a

•	 Cryogenic	targets	are	energy	scaled	from	NIF	ignition	designs
•	 Target	designs	are	being	refined	based	upon	these	experiments	

•	 A	systematic	experimental	scan	of	fuel	adiabat	and	drive	intensities		
 has been conducted

   2 < a < 10; a =	fuel	pressure/Fermi-degenerate	pressure
   IL =	0.25	to	1.5	× 1015 W/cm2

   Vimp =	2.5	to	4.0	× 107 cm/s
			 In-flight	aspect	ratio:	30 to	50
			 Number	of	perturbation	e-folds ~5	to	7

tR

Ti

Areal Density

5-nm CD
95-nm D2/DT

Standard target Preheat mitigation target

10-nm CD
80- or 95-nm

D2/DT

Ice

Gas

Ice

Gas
~450 nm



Downshifted	secondary	proton	spectra	measure*	 
the	compressed	fuel	areal	density

E16134a *F.	H.	Séguin	et al., Rev. Sci. Instrum. 74,	975	(2003).
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A severe degradation of tR,	up	to	40%	of	1-D	predictions,	
was	observed	in	high-intensity	mid-	and	low-adiabat	
cryogenic	implosions	on	OMEGA

TC7833b

Areal Density

•		Thick	targets	minimize	hydro-instabilities:	 
	 in-flight	aspect	ratio	~ 30
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The	nonlocal	thermal-transport	model	improves	 
the	agreement	between	1-D	simulation	and	 
experimental	areal	densities

I1786

Areal Density

	•	The	measured	areal	densities	remain	somewhat	lower	 
than	1-D	simulations	with	nonlocal	heat	conduction.
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I1787

•	 There	are	two	plausible	explanations	for	the	reduction	of	the	
experimental	areal	density	relative	to	the	1-D	simulations

	 	 –	 preheat	by	hot	electrons	generated	by	the	two-plasmon-decay		
  instability (discussed next)

  – measured nuclear burn histories can be different from  
	 	 1-D	simulations	due	to	hydrodynamic	instabilities*

	 	 	 	 -	 protons	may	sample	lower	areal	densities

	 	 	 	 -	 a	similar	effect	has	been	seen	in	warm	 
	 	 	 	 plastic-target	implosions

	 	 	 	 -	 statistics	need	to	be	improved	to	measure	 
	 	 	 	 this	in	cryogenic	implosions

The	remaining	discrepancies	between	measured	and	
simulated	areal	density	may	be	due	to	hot-electron	preheat

Preheat

*P.	B.	Radha	et al., Bull. Am. Phys. Soc. 51, 104 (2006).



Hot-electron	preheat	generated	by	laser–plasma	 
interactions can significantly degrade the final areal density

TC7812a

•	 Low-a designs T0 ~	20	eV

•	 20%	tR reduction for DTshell ~	6	eV

•	 For	OMEGA	experiments,	Epreheat ~	10	to	20	J	(~0.1% of laser energy)
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3/2~	light	and	hard	x	rays*	indicate	the	presence	 
of	the	two-plasmon-decay	instability

TC7848a

Preheat

*C.	Stoeckl	et al., Rev. Sci. Instrum. 72, 1197 (2001).
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Preheating	by	hot	electrons	from	the	two-plasmon-decay	
instability is a candidate for additional cryo tR degradation

TC7835c
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•	 Measured	Thot >	50	keV	 –  electron range is greater than the D2	thickness

	*B.	Yaakobi	et al., Phys. Plasmas 12,	062703	(2005).
	 *C.	Stoeckl	et al. Phys. Rev. Lett. 90,	235002	(2003).
**A. Simon et al., Phys. Fluids 26,	3107	(1983).

Preheat

•

Measured hard x-ray signal*
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The	two-plasmon-decay	threshold	is	exceeded	 
when	the	laser	burns	into	the	D2 fuel

TC7866a

•	 Above-threshold	parameter* for 2 ~p instability

•	 Instability	develops	when	h > 1

I

T

L

230 keV

m14
h =

n

Preheat

		V.	N.	Goncharov	(GI1.00001).
* A. Simon et al., Phys. Fluids 26,	3107	(1983).
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An	improved	agreement	between	simulated	and	
measured tR	is	observed	for	low	intensity	implosions*

TC8037c
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*V.	A.	Smalyuk	et al.,	Anomalous	Absorption	(2007);	and	to	be	published	in	Phys.	Rev.	Lett. 
 D. Shvarts et al.,	Anomalous	Absorption	and	IFSA	(2007).

Preheat

All	simulations	use	nonlocal	thermal-transport	model



T2367a

•	 Hard	x-ray	signals	produced	by	bremsstrahlung	radiation	 
from	fast	electrons	may	indicate	preheating*

Hard	x	rays	due	to	energetic	electrons	from	the	two-plasmon-
decay	instability	increases	rapidly	with	laser	intensity

Preheat

*V.	A.	Smalyuk et al.,	to	be	published	in	Phys.	Rev.	Lett.
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T2367a

•	 Hard	x-ray	signals	produced	by	bremsstrahlung	radiation	 
from	fast	electrons	may	indicate	preheating*

Hard	x	rays	due	to	energetic	electrons	from	the	two-plasmon-
decay	instability	increases	rapidly	with	laser	intensity

Preheat

*V.	A.	Smalyuk et al.,	to	be	published	in	Phys.	Rev.	Lett.
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T2367a

•	 Hard	x-ray	signals	produced	by	bremsstrahlung	radiation	 
from	fast	electrons	may	indicate	preheating*

Hard x rays from energetic electrons are reduced  
by	increasing	the	CD	thickness.

Hard	x	rays	due	to	energetic	electrons	from	the	two-plasmon-
decay	instability	increases	rapidly	with	laser	intensity

Preheat

*V.	A.	Smalyuk et al.,	to	be	published	in	Phys.	Rev.	Lett.
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Ignition-relevant areal densities (~200 mg/cm2) are achieved  
by	accurate	shock	timing	and	mitigating	fast-electron	preheat

I1742e

These are, by far, the highest areal densities measured in ignition-relevant 
laboratory	implosions—very	important	for	direct-	and	indirect-drive	ignition.

X-ray pinhole camera
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•		 Target	design	tuned	to	be	insensitive	to	the	thermal	transport	model	
and	has	low	hard	x-ray	signal.



Predictive	capability	for	the	shock	timing	is	validated	 
by	adjusting	picket	timing

T2368a
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Good	agreement	between	simulated	and	measured	tR  
is	observed	for	implosions	with	low	hard	x-ray	signals

TC8037d

0
0

50

100

150

200

250

50 100

tR1-D (mg/cm2)

t
R

ex
p
 (

m
g

/c
m

2 )

150 200 250

Peak I < 3 × 1014 W/cm2 (thin CD)
I ~ 1015 W/cm2

10-nm CD, I = 5 × 1014 W/cm2

Areal Density

All	simulations	use	nonlocal	thermal-transport	model



2-D DRACO simulations of cryogenic high-tR shots
confirm	experimentally	observed	areal	densities		

I1774

Areal Density
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Direct-drive	research	is	on	a	path	to	ignition	 
on the NIF

I1772

Path to Ti

•		 Ignition-relevant	areal	densities	have	been	achieved
•	 The	next	step	is	to	increase	Ti

R. Betti (CO5.00001).
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Future	experiments	will	increase	the	ion	temperature	
while	mitigating	preheat	and	hydro-instabilities

T2371a

•	 Ti increases	with	implosion	velocity,	

•	 Increase	the	implosion	velocity	to	4	× 107 cm/s

  – thinner ice layer (60-nm D2)

  – higher intensity

	 	 –	 re-time	shock	waves	 
	 	 with	the	nonlocal	model

•	 Doped	ablators	(Si and Ge)  
can minimize energetic  
electron	preheat	and	 
Rayleigh–Taylor	growth	rate

Path to Ti

~T V .
impi
1 3
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Initial	experiments	with	high-Z	doped	plastic	shells	 
show	reduced	hard	x-ray	production

TC7813c

•	 High-Z	dopants	reduce	hot-electron	generation

Path to Ti

•	 High-Z	dopants	reduce	Rayleigh–Taylor	growth	rates*
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Direct drive can achieve ignition conditions
while	NIF	is	in	the	x-ray-drive	configuration

TC6300c

Pointing for
x-ray drive
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*S.	Skupsky	et al., Phys. Plasmas 11,	2763	(2004).



The	polar-drive	point	design	achieves	a	yield	of	17	MJ
with	all	current	levels	of	NIF	nonuniformities	included	 
in the calculation

TC7741b
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New	ignition	concepts	separate	compression (tR)  
and heating (Ti)—two-step	ignition

I1784

•	 In	the	current	hot-spot	ignition,	the	driver	provides	 
both	compression	(tR) and heating (Ti).

•	 Both	fast	ignition	and	shock	ignition	use	a	second	drive	 
to	provide	heating	(Ti).

Advanced	Concepts

Two-step	ignition	offers	lower	driver	energies	 
with	the	possibility	of	higher	gain.

•	 Measured	cryogenic	target	areal	densities	are	relevant	 
to these schemes.

Fast Ignition

Compression Compression + shock pulse

HEPW
laser

+
generated
hot e–’s 

Shock Ignition



Fast	and	shock	ignition	can	trigger	ignition
in massive (slow) targets leading to high gains

TC7815b

Advanced	Concepts
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Launching	a	spherically	convergent	shock	wave 
at	the	end	of	the	laser	pulse	can	trigger	ignition	 
at	lower driver energies

TC7830a

•	 Low-velocity	implosions	can	be	shock-ignited to yield moderately high 
gains (~50	to	70)	at	relatively	low	UV	driver	energies	(~400	to	500	kJ). 

•	 2-D	simulations	indicate	that	shock	ignition	survives	the	detrimental	
effects	of	laser	imprinting	for	UV	driver	energies	in	the	500-kJ	range.

•	 Implosion	experiments	on	thick	CH	shells	filled	with	4-	to	25-atm D2  
show	that	pulse	shapes	with	shock spikes	give	higher	neutron	yields	 
and	higher	areal	densities	than	standard	pulse	shapes.

Advanced	Concepts

R. Betti et al., Phys. Rev. Lett. 98,	155001	(2007).
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Shock-ignition	pulse	shapes	lead	to	higher	compression	
and more favorable ignition conditions

TC7868a

Marginal	shock	ignition	(with	mL =	0.35	nm)	requires	350	kJ.
Hydro-equivalent	conventional	ignition	requires	1.3	MJ.

Advanced	Concepts
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Initial	shock-ignition	research	on	OMEGA	 
is encouraging 

TC7824a
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Plastic-shell	implosions	with	a	shock-ignition	pulse	
shape	show	larger	yield	and	higher	compressibility

E16133a

Advanced	Concepts

•		 YOC	is	the	measured	yield	divided	by	the	1-D	predicted	yield.

•		 Hot-spot	convergence	ratio:	ratio	of	the	original	target	radius	
to	the	compressed	hot-spot	radius.
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High-energy	petawatt	lasers	will	extend	 
ignition	capabilities

I1773

•	 Backlighting	of	target	implosions
•	 Fast	ignition	(reviewed	by	M.	Key	APS/DPP 06)

OMEGA EP

60-beam
OMEGA

Short-pulse	
seed laser 

system

Preamplification	
and injection into 

the main chain

Redirection and 
compression	of	 

the beam near the 
Target Chamber

2 ×	1.2	kJ	one	beamline
1 ×	3.3	kJ	one	beam
13.2	kJ	uni-phase	quad

OMEGA EP (2008)* NIF ARC (2009)†

2 HEPW beamlines
2.6	kJIR	each	in	10	ps

Advanced	Concepts

*D.	D.	Meyerhofer	(TO6.00001).
†M. Key, ECLIM (2006).



These are exciting times for inertial confinement fusion

I1768a

Summary/Conclusions

The	achievement	of	ICF	ignition	will	change	the	fusion	landscape.

•	 Experiments	on	Nova	(previously)  
and	OMEGA	are	developing	the	 
target-physics	understanding.

•	 Recent	OMEGA	experiments	have	
demonstrated ignition-relevant  
areal densities.

•	 New	concepts	will	extend	ignition	
possibilities.

•	 This	talk	reviewed	direct-drive	 
ICF	progress.*

•	 After	35	years,	the	ICF	community	is	
ready	to	exploit	advances	in	physics	
understanding and drivers, leading to 
ignition	experiments	on	the	National	
Ignition Facility (NIF).

*More	ICF,	see	Lindl	(SR1.00001).
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