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Self-Heating is Critical for a D-T Fusion Reactor
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The alpha particle, which has 20% of the fusion reaction energy, remains
trapped in the plasma and heats the plasma.



Fusion Plasmas are Complex Non-Linear Dynamic Systems
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Can a fusion dominated plasma be attained
and controlled in the laboratory?
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The Tokamak is Technically Ready to Address Self-Heating Physics
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The tokamak is sufficiently advanced to permit the design, construction and initiation of a

next step burning plasma experiment within the next decade that could address the fusion
plasma and self-heating issues for magnetic fusion.
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Major Advances & Discoveries of 90’s Lay Foundation for
Next Step Burning Plasma Experiments

Burning Plasma
Experiment

7/

MHD

e g-profile control
and measurement

* steady-state,
bootstrap equilibria

* active mode control
of kink & tearing

Transport &
Turbulence

e shear-flow turbulence
suppression

 gyro-kinetic theory
based models

» extensive data-base
models on transport

using dimensionless
scaling

Wave/Particl
Interactions

* alpha heating in DT
found to be classical
forQ<1

e “standard model” of
Alfvén Eigenmodes

e LHCD & ECCD used
for near SS & mode
control

Plasma Wall
Interactions

e detached divertor
demonstrated

* large scale models
developed

* high heat-flux
metallic technology
developed



Advanced Burning Plasma Exp't Requirements

Burning Plasma Physics

Q >5, ~ 10 astarget, ignition not precluded
f, = P/Pheat > 50%, ~ 66% as target, up to 83% at Q = 25
TAE/EPM stable at nominal point, able to access unstable

Advanced Toroidal Physics
be = Ibs/lp 2 500/0 Up tO 750/0

By ~ 2.5, no wall ~ 3.6, n =1 wall stabilized

Quasi-stationary

Pressure profile evolution and burn control > 10 1.
Alpha ash accumulation/pumping > several T,
Plasma current profile evolution 110 3 1,

Divertor pumping and heat removal several Tgierors Thirst wall



A Compact High Field Tokamak has Advantages for BP Expt's

AT Features

* DN divertor

N
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* strong shaping
 very low ripple < 0.3%

e internal coils
2.14m
* space for wall
stabilizers

* inside pellet
injection

« large access ports Z

Wedged TF Coils (16), 15 plates/coil*
Inner Leg BeCu C17510,

remainder OFHC C10200

«——Compression Ring

Double Wall Vacuum
Vessel (316 S/S)

D -«—All PF and CS Coils*
OFHC C10200

[ ]

Internal Shielding
— (60% steel & 40%water)

g Vertical Feedback and Error
D Field Correction Coils

Passive Stabilizer Plates
space for wall mode stabilizers

W-pin Outer Divertor Plate
Cu backing plate, actively cooled

[ ]

Direct and Guided Inside Pellet Injection

*Coil systems cooled to 77 °K prior to pulse, rising to 373 °K by end of pulse.

FIRE Cross/Persp- 5/25//[DOE
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2.14m


Optimization of a Burning Plasma Experiment

» Consider an inductively driven tokamak with copper alloy TF and PF coils
precooled to LN temperature that warm up adiabatically during the pulse.

* Seek minimum R while varying A and space allocation for TF/PF coils for a
specified plasma performance - Q and pulse length with physics and eng. limits.
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What is the optimum for advanced steady-state modes?
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Fusion Ignition Research Experiment

(Fl R E) http://fire.pppl.gov

Design Features

2.14m, a=0.595m

= 10T

W= 5.2 GJ

L= 7.7MA

P., <20 MW

Q =10, P, ~ 150 MW

Burn Time =20s

Tokamak Cost = $375M (FY99)
Total Project Cost = $1.2B

at Green Field site.

R
B

Mission: Attain, explore, understand and optimize
magnetically-confined fusion-dominated plasmas.

U.S. Based, part International Modular Strategy
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Simulation of Burning Plasma in FIRE
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* ITER98(y, 2) with H(y, 2) = 1.1, n(0)/n) = 1.2, and n/ ng,, = 0.67

e Burn Time =20 s = 21t = 41He = ZTCR

Q = Pfusion/( Paux + Poh)



Advanced Burning Plasma Physics
could be Explored in FIRE

Self-Heating Dominant Self-Current Drive Dominant
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Tokamak simulation code results for H(y, 2) = 1.6, B = 3.5, would require RW
mode stabilization. q(0) = 2.9, qmqin =2.2 @ r/a=0.8,8.5T, 5.5 MA



Success with FIRE would Address the Critical Burning
Plasma Science Issues for an Attractive MFE Reactor

Attractive MFE

1.0r Reactor
Burning (e.g. ARIES Vision)
Plasma
Physics

0.81~ Advanced Burning

Plasma Physics
Burning Plasma Physics
and
Advanced Toroidal Physics
0.6+ Burning Plasma
P Physics
a Alpha Dominated
PHeat fq = Pg /(P + Pext) > 0.5,
T >15 T, 2-3 1
04 |— Burn E He
The Modular Strategy
Advanced Toroidal
02+ Physics
Large Bootstrap Fraction,
High beta (power density)
Ex|sting Emerging Advanced P* ~ P*ARIES-RS),
Data Base Toroidal Data Base Tpulse > 2 -3 Tskin
0.0 ‘ -

Advanced Toroidal Physics (e.g., boostrap fraction)

Attain a burning plasma with confidence using “todays” physics,
but allow the flexibility to explore tomorrow’s advanced physics.
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