INTRODUCTION TO BURNING PLASMA PHYSICS

Gerald A. Navratil Columbia University

American Physical Society - Division of Plasma Physics 2001 Annual Meeting, Long Beach, CA 1 November 2001

THANKS TO MANY PEOPLE WHO HELPED...

BILL DORLAND BOB GROSS **RICH HAWRYLUK ALI MAHDAVI** DALE MEADE **RIP PERKINS** TOM PETRIE PETE POLITZER STEW PRAGER **JIM STRACHAN** JIM VAN DAM ... AND OTHERS

- + UFA BURNING PLASMA WORKSHOP - AUSTIN 2000
- + UFA BURNING PLASMA WORKSHOP - SAN DIEGO 2001
- + FESAC BURNING PLASMA PANEL & REPORT

PRODUCING AND UNDERSTANDING A SUSTAINED FUSION HEATED PLASMA IS A GRAND CHALLENGE PROBLEM FOR OUR FIELD

274-01/rs

FUSION "SELF-HEATING" POWER BALANCE

FUSION POWER DENSITY: $p_f = R\epsilon_f = \frac{1}{4}n^2 \langle \sigma v \rangle \epsilon_f$ for $n_D = n_T = \frac{1}{2}n$

TOTAL THERMAL ENERGY
$$W = \int \left\{ \frac{3}{2} nT_i + \frac{3}{2} nT_e \right\} d^3x = 3 nTV$$

IN FUSION FUEL,

DEFINE "ENERGY CONFINEMENT TIME", $\tau_{E} \equiv \frac{W}{P_{loss}}$

PARAMETERIZATION OF Q VERSUS nT τ_{E} **OR P** τ_{E}

Recast power balance:
$$P_{\alpha} + P_{heat} = \frac{W_{\tau}}{\tau_{l}}$$

 $nT\tau_{E} = p\tau_{E} = \frac{12T^{2}}{\langle \sigma v \rangle \varepsilon_{\alpha} (1 + \frac{5}{Q})}$

Useful since in 10–20 keV range where $p\tau_E$ is minimum for given Q <5V> \propto T^2

and p is limited by MHD stability in magnetically confined plasmas

Ignition Q =
$$\infty \Rightarrow p\tau_{E} > \frac{12T^{2}}{\langle \sigma v \rangle \epsilon_{\alpha}}$$

OUTLINE

- BASIC REQUIREMENTS FOR A BURNING PLASMA
- FRONTIER SCIENCE ISSUES: WHAT DO WE WANT TO KNOW?
- Q~1 RESULTS: AT THE THRESHOLD
- Q~5: α -effects on TAE stability
- Q~10: Strong Non-Linear Coupling
- Q≥20: BURN CONTROL & IGNITION
- TAKING THE "NEXT STEP"

BURNING PLASMA IS A NEW REGIME: FUNDAMENTALLY DIFFERENT PHYSICS

New Elements in a Burning Plasmas:

SELF-HEATED SIGNIFICANT ISOTROPIC ENERGETIC BY FUSION ALPHAS POPULATION OF 3.5 MEV ALPHAS

LARGER DEVICE SCALE SIZE

PLASMA IS NOW AN **EXOTHERMIC** MEDIUM & HIGHLY NON-LINEAR

COMBUSTION SCIENCE \neq LOCALLY HEATED GAS DYNAMICS

FISSION REACTOR FUEL PHYSICS \neq RESISTIVELY HEATED FUEL BUNDLES

THERE ARE TWO TYPES OF BURNING PLASMA ISSUES...

- GETTING THERE & STAYING THERE:
 - + DENSITY, TEMPERATURE, AND τ_{E} required for $Q \ge 5$
 - + MHD STABILITY AT REQUIRED PRESSURE FOR $Q \geq 5$
 - + PLASMA EQUILIBRIUM SUSTAINMENT ($\tau > \tau_{skin}$)
 - + POWER, FUELING, & REACTION PRODUCT CONTROL

• NEW SCIENCE PHENOMENA TO BE EXPLORED

- + $Q \ge 5$: ALPHA EFFECTS ON STABILITY & TURBULENCE
- + Q ≥ 10: Strong, non-linear coupling between Alphas, pressure driven current, turbulent transport, MHD stability, & boundaryplasma
- + $Q \ge 20$: Stability, control, and propagation of the fusion burn and fusion ignition transient phenomena

Important Physical Properties of $\alpha\text{-}\text{Heating}$

- FOR Q ~ 10: $nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s}$ for T ~ 10 keV
 - + WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION, IMPURITIES SOMEWHAT LARGER VALUE ~ $3 \times 10^{21} \text{ m}^{-3} \text{ keV s}$
- FOR TOKAMAK "TYPICAL" PARAMETERS AT Q ~ 10 n ~ 2 x 10²⁰ m⁻³ T ~ 10 keV τ_E ~ 1.5 s
- BASIC PARAMETERS OF DT PLASMA AND α $V_{Ti} \sim 6 \times 10^5$ m/s $V_{\alpha} \sim 1.3 \times 10^7$ m/s $V_{Te} \sim 6 \times 10^7$ m/s Note at B ~ 5 T: $V_{Alfvén} \sim 5 \times 10^6$ m/s $< V_{\alpha}$
- CAN IMMEDIATELY DEDUCE:
 - 1) α -particles may have strong resonant interaction with Alfven waves.

2) $T_i \sim T_e \text{ since } V_{\alpha} >> V_{Ti} \text{ and } m_{\alpha} >> m_e \text{ the } \alpha \text{-particles slow}$ PREDOMINANTLY ON ELECTRONS.

How CLOSE ARE WE TO BURNING PLASMA REGIME?

Tokamak experiments have approached Q ~ 1 regime.

Q ≤ 1 Results from TFTR and JET

At the Burning Plasma Threshold

DT EXPERIMENTS ON TFTR AND JET

	TFTR	JET		
Peak Transient Q	0.27	0.61		
α Confinement	Classical	Classical		
lpha Slowing Down	Classical	Classical		
α Heating Observed	Heating Observed Yes, but weak		Yes	
α Driven Alfven Wav in Highest ${\rm P}_{\alpha}$ Plasma	es as No	Νο		
т _і	36 keV	28 keV		
Т _е	13 keV 14 keV			
n	1×10 ²⁰ m ⁻³ 0.4×10 ²⁰ m ⁻³			
nTτ	4.3×10 ²⁰ m ^{−3} keVs	8.3×10 ²⁰ m ^{−3} keVs		
f_{α}	f _α 5% [~2MW]		274-01/rs	

FUSION ALPHAS ARE CONFINED AND SLOW DOWN CLASSICALLY IN TFTR

 JET reports same conclusion using detailed modeling of α-heating power balance.

JET DT EXPERIMENTS SHOW α-HEATING OF CENTRAL ELECTRONS

• D/T ratio varied & maximum $\Delta T_e \sim 3$ keV at 60% T

NO α-DRIVEN ALFVENIC INSTABILITIES SEEN IN TFTR AND JET IN HIGHEST FUSION POWER DT PLASMAS

- AE stable due to strong damping by beam and plasma ions in NBI heated hot ion mode plasmas.
- AE modes were observed in equilibria with low shear and higher central q just after NBI turned off.

Q ~ 5: α-effects on TAE stability

ALPHA PARTICLE EFFECTS: KEY DIMENSIONSLESS PARAMETRS

•Three dimensionless parameters will characterize the physics of alpha-particle-driven instabilities:

- Alfven Mach Number: $V_{CV}/V_A(0)$
- Number of Alpha Lamor Radii (inverse): ρ_{α}/a
- Maximum Alpha Pressure Gradient (scaled): Max R $ablaeta_{lpha}$

	Range of Interest (e.g. ARIES-RS/AT)	ITER-FEAT (reference)	FIRE (reference)	JET
V _{\alpha} /V _A (0)	≈ 2.0	1.9	2.2	1.6–1.9
ρ _α /a	≈ 0.02	0.016	0.028	~0.1
Max $\mathbf{R}\nabla\beta_{\mathbf{C}}$	_χ 0.03–0.15*	0.05	0.035	0.02-0.037

• Continuous spectrum, shear Alfvén resonance

Add 2D toroidal effects:

• Periodic boundary conditions for toroidal mode number, n, and poloidal mode number, m

 m and m+1 are coupled and a "gap" is opened in the otherwise continuous spectrum

Add elliptical cross-section effects:

 m and m+2 are now coupled and an elliptical "gap" is opened in the continuous spectrum

Add triangularity cross-section effects:

 m and m+3 are now coupled and an triangularity "gap" is opened in the continuous spectrum

Discrete Modes Appear in Gaps in the Continuum:

- Alfvén wave continuum is strongly damped.
- TAE gap-modes are less damped: free energy from ∇p_α tapped by wave/particle resonance drive from α-particles may destabilize these modes.

BASIC ALFVEN EIGENMODE PHYSICS EXTENDS TO RANGE OF TOROIDAL CONFIGURATIONS

Tokamak:

Spherical Torus:

Stellarator:

 Details of spectra differ but underlying physics and modeling tools are common.

New Alpha Effects Expected on Scale of Burning Plasma

- Present experiments show alpha transport due to only a few global modes.
- Smaller value of ρ_α/<a> in a Burning Plasma may lead to a "sea" of resonantly overlapping unstable modes & possible large alpha transport.
- Reliable simulations not possible...needs experimental information in new regime.

This and other alpha physics will be discussed in more detail in next talk by Bill Heidbrink...

Q ~ 10: Strong Non-Linear Coupling

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

BASIC COUPLING OF FUSION ALPHA HEATING:

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD ALPHA DRIVEN TAE MODES:

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:

MAJOR DISCOVERY OF THE 1990's: ION TURBULENCE CAN BE ELIMINATED

SHEARED FLOW CAUSES TRANSPORT SUPPRESSION

Gyrokinetic Theory

 Simulations show turbulent eddies disrupted by strongly sheared plasma flow

Experiment

• Turbulent fluctuations are suppressed when shearing rate exceeds growth rate of most unstable mode

Without Flow

With

Flow

Combination of Turbulence Suppression & Bootstrap Current Leads to Steady-State Advanced Tokamak

• Data from JT-60U shows sustained transport barrier and 100% non-inductive current drive PLASMA BOUNDARY PHYSICS: HEAT REMOVAL & CONFINEMENT

EDGE PEDESTAL STRONGLY COUPLED TO CONFINEMENT: INTERNAL VT LIMITED BY MICROTURBULENCE SO EDGE T CONTROLS CENTRAL FUSION REACTIVITY:

HEAT REMOVAL SOLUTIONS TREND TO HIGH EDGE DENSITY – BUT BOOTSTRAP CURRENT SUSTAINED STEADY-STATE PLASMAS TREND TOWARDS LOWER EDGE DENSITY:

COMPATABILITY AN OPEN ISSUE IN BURNING PLASMA REGIME

ENERGETIC IONS MODIFY Δ : COUPLING TO α -PARTICLES.

Pedestal Temperature Requirements for Q=10

Device	Flat ne ⁺	Peaked ne*	Peaked ne w/ reversed q
IGNITOR*	5.1	5.0	5.1 keV
FIRE	4.1	4.0	3.4 keV
ITER-FEAT *	5.8	5.6	5.4 keV

flat density cases have monotonic safety factor profile

*
$$n_{eo}^{\prime}/n_{ped}^{\prime}$$
 = 1.5 with n_{ped}^{\prime} held fixed from flat density case

- ✤ 10 MW auxiliary heating
 - 11.4 MW auxiliary heating
- ✤ 50 MW auxiliary heating

ADVANCED TOKAMAK NONLINEAR TRANSPORT COUPLINGS

Slow, red magnetic flux diffusion loop

Q > 20:

Burn Control & Ignition Transient Phenomena

TRANSIENT BURN PHENOMENA WHEN $Q \ge 20$

274-01/rs

TRANSIENT BURN PHENOMENA WHEN Q ≥ 20

274-01/rs

TRANSIENT BURN PHENOMENA WHEN Q ≥ 20

MORE "REALISTIC" POWER BALANCE

• ITER POPCON Power Balance Analysis

 Additional limits on density, pressure, & power thresholds constrain operating space.

FUSION "BURN" PROPAGATION AT HIGH Q

•Deflagration – sub-sonic

– Mediated by diffusive thermal conductivity, $\boldsymbol{\chi}$

FUSION BURN PROPAGATION AT HIGH Q

• EXAMPLE PARAMETERS $n \sim 4 \times 10^{20} \text{ m}^{-3}$ $T \sim 20 \text{ keV}$ $P\alpha \sim 10 \text{ MW/m}^3$ $W = 3nT \sim 3.8 \text{ MJ/m}^3$ $\chi \sim 0.1 \text{ m}^2/\text{s}$

δ ~ 0.2 m

 $V_b \sim 0.5 \text{ m/s}$

Comments on "Next Steps" for Study of Burning Plasmas

Major Advances & Discoveries of 90's Lay Foundation for Next Step Burning Plasma Experiments

Modest Confinement Extrapolation Needed for BP

CONCLUDING COMMENTS & DISCUSSION

• BURNING PLASMA STUDIES OPEN A NEW REGIME OF PLASMA PHYSICS OF AN EXOTHERMIC MEDIUM:

IS THE GRAND CHALLENGE PROBLEM IN OUR FIELD.

- Physics basis for burning plasma step was nearly in hand in 1986 with proposals for CIT & later BPX : If built we now know it would have reached Q > 5.
- DRAMATIC PROGRESS IN 1990'S HAS ESTABLISHED A SOUND BASIS FOR EXPLORATION OF THE BURNING PLASMA REGIME.
- WE MUST WORK TOGETHER NOW TO TAKE THIS IMPORTANT BURNING PLASMA STEP.

