The ARIES Designs for a Tokamak Power Plant

With particular emphasis on the ARIES-I and PULSAR Designs

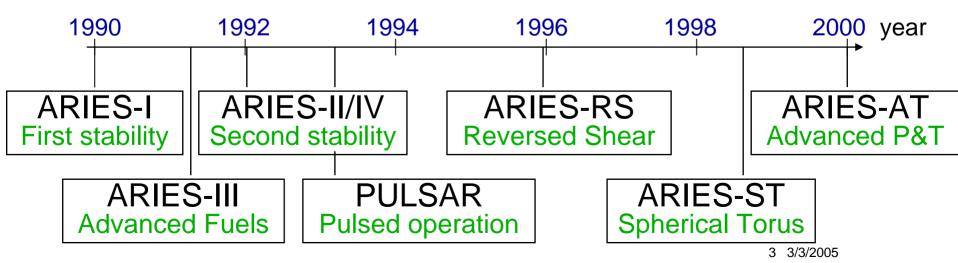
presented by

S.C. Jardin

Princeton University Plasma Physics Laboratory

Princeton University AST 558 Seminar Series February 28, 2005

- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions



Advanced Reactor Innovation Evaluation Study

- ~ 10 year program to identify and begin evaluation of attractive concepts for a Magnetic Fusion Energy (MFE) power plant
- Led by Profs. R. Conn and F. Najmabadi (UCLA/UCSD)
- Involved over 50 fusion scientists and engineers from about 15 institutions...University, Laboratory, Private sector

Documented 7+ tokamak power plant designs

Philosophy of the ARIES Studies

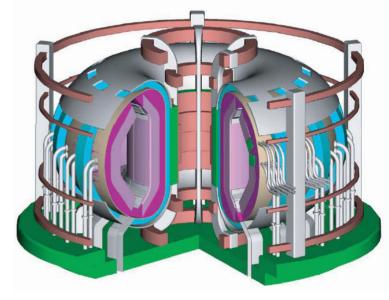
A new technology (FUSION) can penetrate the market only if it is significantly better than any existing technology (FISSION)

- Attractive Safety Features
 - Eliminate "N-stamp" requirements (extensive, expensive design certification)
 - Low radioactive inventory (no 3-mile island or Chernobyl)
 - Minimal weapons proliferation and security costs
- Attractive Environmental Features
 - Waste disposal advantages "Class-C" shallow-land burial (no Yucca Mountain)
- The assumption is that if these advantages are factored into the "true cost", then fusion will have an advantage over fission

- (Corollary is that the designs must be such as to keep these advantages)

- The physics and engineering assumptions used in the ARIES designs were sometimes very aggressive in order to get an attractive design:
 - "Theoretically possible", not necessarily "experimentally demonstrated"

ARIFS


- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions

ARIES-I

First-Stability Regime, Steady State Plasma MHD Stable to kink modes without a Conducting Wall

- ARIES-I design was to have "present day" physics ("first stability regime"), aggressive engineering, but keeping safety and environmental advantages
- Because RF current drive is relatively inefficient, the fraction of self-generated current (bootstrap current) must be large...68% in ARIES-I
- The constraint of "first stability" and high bootstrap current leads to relatively low $\beta = 1.9\%$, and modest normalized $\beta_N = 3.0$,
- Since fusion power ~ β²B⁴, this is compensated by high B (21 T at coil, 11.3 T at plasma center)*

*(Redesign, A-1', has 16 T and 9 T)

ARIES PULSAR STARLITE

R=6.75 m, a = 1.5 m, B_T = 11.3 T, $I_P = 10$ MA

1 GW net power

Engineering features of the ARIES-I design:

- Advanced superconductor Nb₃Sn alloys toroidal field magnets producing 21 (16) T at magnet and 11.3 (9) T at plasma center
- ARIES-I blanket is He-cooled (at 10 MPa) design with SiC composite structural material, and Li₂ZrO₃ solid tritium breeders with beryllium neutron-multiplier
 - SiC composites are high strength, high temperature structural materials with very low activation and very low decay afterheat
- An advanced Rankine power conversion cycle as proposed for future coal-burning plants (49% gross efficiency).
- Folded wave-guide launcher made of SiC composite with 0.02 mm Cu coating (for RF current drive)
- Fusion power core modular for easy maintenance using a vertical lift approach

ARIES

Major Parameters of ARIES-I

		A-1'	ARIES PULSAR STARLITE
Aspect Ratio	4.5	4.5	High A to decrease I_P and divertor heat loads, and increase f_{BS} ,
Major Radius (m)	6.75	7.9	Required for power balance
Vertical Elongation ĸ	1.8	1.8	Minimizes PF energy, vertically stable
Plasma Current (MA)	10.2	10	Provides adequate confinement
Toroidal Field on Axis (T)	11.3	9	At limit of advanced alloy conductor
Toroidal beta	1.9%	1.9%	At first stability limit without wall
Neutron Wall load (MW/m ²)	2.5	2.0	20-MWy/m ² lifetime
Fusion power (MW)	2564		97 MW ICRF CD power,
Net electric power (MW)	1000	1000	Same for all ARIES designs
Net plant efficiency	39%		Advanced Rankine steam power cycle with 49% efficiency 8 3/3/2005

ARIES-I

First-Stability Regime, Steady State Plasma MHD Stable with no Conducting Wall

Troyon Limit:

$$\beta \le C_T \left(\frac{\mu_0}{40\pi}\right) \left(\frac{I_P}{aB_T}\right)$$

or,

 $(\beta / \varepsilon)(\varepsilon \beta_P) \leq \left(\frac{C_T}{20}\right)^2 \frac{(1+\kappa^2)}{2}$

 $C_{\tau}=3.0$

 $I_{p} = \text{plasma current (MA)}$ $B_{T} = \text{toroidal field (T)}$ $\varepsilon = a/R = \text{inverse aspect ratio}$ $\beta = 2 /B^{2}, \quad \beta_{p} = 2 /B_{p}^{2}$ $\kappa = \text{plasma elongation}$

ARIES

PULSAR STARLITF

Bootstrap fraction:

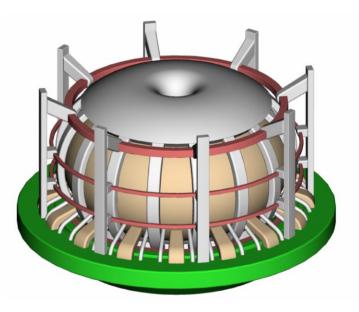
it follow that \rightarrow

$$\frac{I_{BS}}{I_P} = \frac{1}{\varepsilon^{1/2}} (\varepsilon \beta_P) C_{BS}$$
$$(\beta/\varepsilon) \le \frac{1}{\varepsilon^{1/2}} C_{BS} \left(\frac{C_T}{20}\right)^2 \frac{(1+\kappa^2)}{2}$$

 $C_{BS}=0.5$

Bootstrap alignment: Need to have $q_0 > 1$ for $I_{BS}/I_P > 0.5$ to avoid local bootstrap overdrive. This tends to lower C_{τ}

=> tradeoff between high β and high Bootstrap fraction


A=R/a=4.5, I_{BS}/I_{P} =.68, β =1.9%, q_{0} =1.3

- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions

Objectives of the PULSAR study

- Study the feasibility and potential features of a tokamak with a pulsed mode of plasma operation as a fusion power plant.
- Identify trade-offs which lead to the optimal regime of operation.
- Identify critical and high-leverage issues unique to a pulsed-plasma tokamak power plant.
- Compare steady-state and pulsed tokamak power plants.

ARIES PULSAR STARI ITF

R=8.6 m, a = 2.15 m, B_T = 7.5 T, I_P = 15 MA

1 GW net power

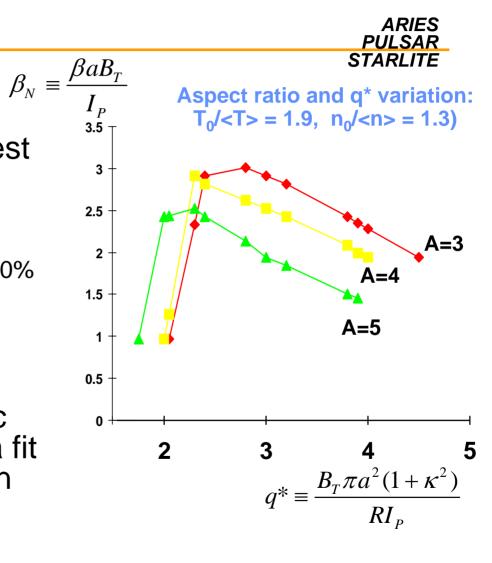
11 3/3/2005

PULSAR Plasma Regime of Operation

• The loop voltage induced by the "inductive" current-drive system is constant across the plasma (stationary state):

$$\frac{\partial \vec{B}}{\partial t} = 0 \quad \Rightarrow \quad \nabla \times \vec{E} = 0 \quad \Rightarrow \quad E = \frac{V_L}{2\pi} \nabla \phi$$

 In this stationary state, plasma current-density profiles (induced and bootstrap) are determined by *n* and *T* profiles;


$$\vec{J} = \frac{V_L}{2\pi R\eta(n,T)} + J_{BS}(n,T)$$

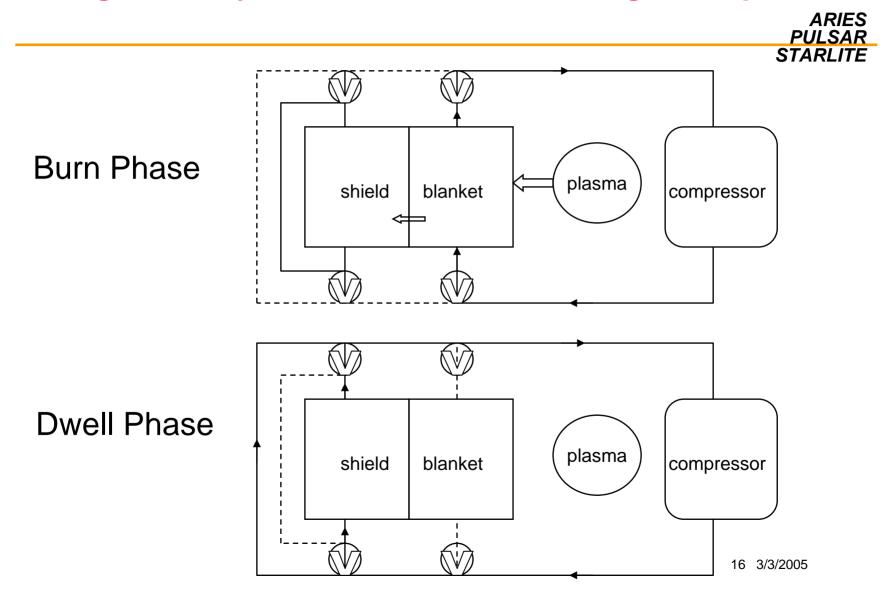
- Pressure profile is $n \ge T$
- Thus, Equilibrium is completely determined from $n(\psi)$, $T(\psi)$, I_P
 - No additional freedom to tailor the current profile to improve stability limits

ARIFS

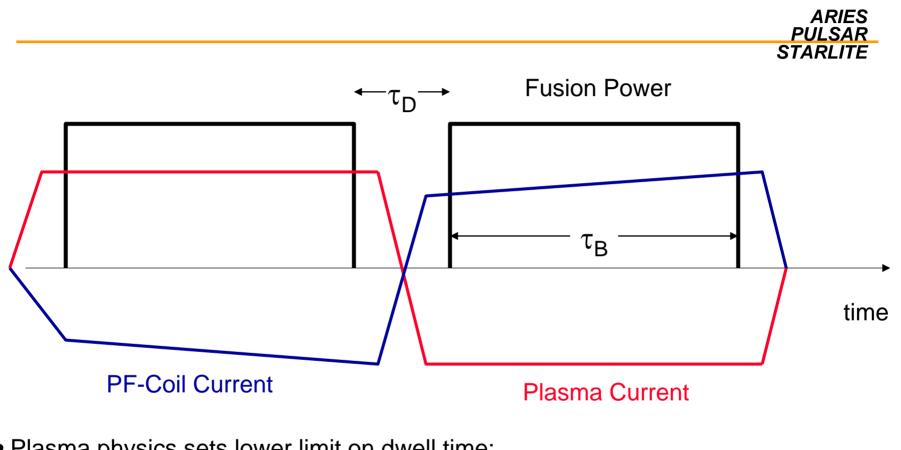
PULSAR Plasma Regime of Operation(2)

- It follows that the current- β_N density profile cannot be tailored to achieve the highest possible β
 - β_N is limited to \leq 3.0 (for most favorable profiles...broad)
 - Bootstrap fraction is not large (~30% to 40%, maximum)
 - Second stability operation is not possible
- A large scan of stable ohmic equilibrium was made and a fit to the data base was used in the systems analysis

Power Flow in a Pulsed Tokamak



- Utilities require a minimum electric output for the plant to stay on the grid
- Grid requires a slow rate of change in introducing electric power into the grid
- Large thermal power equipment such as pumps and heat exchangers cannot operate in a pulsed mode. In particular, the rate of change of temperature in the steam generator is ~ 2°C/min in order to avoid boiling instability and induced stress.
- Therefore, Steady Electric Output is Required and an Energy storage system is needed.


PULSAR Energy Storage System

- An external energy storage system which uses the thermal inertia is inherently very large:
 - During the burn, $T_{coolant} > T_{storage}$
 - During the dwell, $T_{coolant} < T_{storage}$
 - But the coolant temperature should not vary much.
 Therefore, thermal storage system should be very large
- PULSAR uses the outboard shield as the energy storage system and uses direct nuclear heating during the burn to store energy in the shield;
 - This leads to a low cost energy storage system but the dwell time is limited to a few 100's of seconds

Energy is accumulated in outer shield during burn phase, regulated by mass flow control during dwell phase

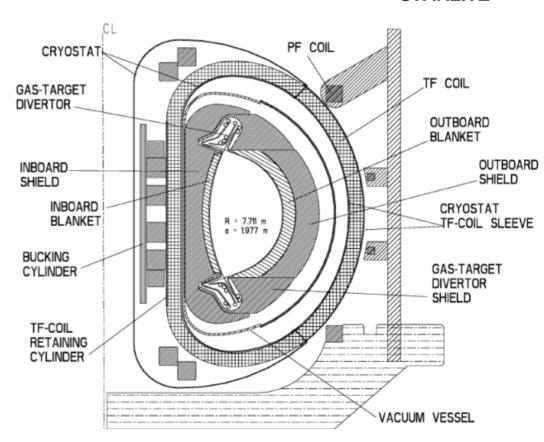
PULSAR cycle

- Plasma physics sets lower limit on dwell time;
 - upper limit set by thermal storage system.
- Burn time determined through trade-off between size of OH system and number of cycles.
 - COE insensitive to burn times between 1 and 4 Hrs

- $\tau_D \sim 200 \text{ sec}$
- $\tau_{\rm B}$ ~ 9000 sec

17 3/3/2005

Pulsar Dwell Time Calculation


Current Rampup time	54 s
Plasma ignition time,	53 s
Plasma de-ignition time	38 s
Plasma shutdown time	54 s
Total Dwell time:	200 s

Burn time, 9000 s Number of cycles 2,700 / year ARIES PULSAR

STAR

PULSAR magnet system

- The PULSAR TF magnet system is similar to the old ITER design
- OH solenoid is located between the TF coil and the bucking cylinder
- Shear panels are used between the TF coils
- Inner legs of the TF coils are keyed together to support the shear loads
- Because of the elaborate key system, the supportable stress in the inner leg of the TF coils is reduced
- => ~15% Lower Toroidal field strength than in ARIES I

ARIES PULSAR STARLITE

Major Parameters of PULSAR

		A-1'	ARIES PULSAR STARLITE
Aspect Ratio	4.0	(4.5)	Optimizes at slightly lower A since f _{BS} does not weigh as heavily
Major Radius (m)	8.5	7.9	Required for power balance
Vertical Elongation ĸ	1.8	1.8	Minimizes PF energy, vertically stable
Plasma Current (MA)	13	10	Provides adequate confinement
Toroidal Field on Axis (T)	6.7	9	Lower due to cyclic PF induced stresses
Toroidal beta	2.8%	1.9%	First stability limit without wall, lower β_P
Neutron Wall load (MW/m ²)	1.3	2.0	20-MWy/m ² lifetime
Net electric power (MW)	1000	1000	Same for all ARIES designs

PULSAR

ITER-like design with current driven by OH-coils + Bootstrap current

Troyon Limit:

$$(\beta / \varepsilon)(\varepsilon \beta_P) \leq \left(\frac{C_T}{20}\right)^2 \frac{(1+\kappa^2)}{2}$$

Operate at higher I_P (lower β_P) to maximize β/ϵ

- However, no freedom in current profile...no non-inductive current drive
 - Current profile J determined from T and n profiles by stationary constraint

$$\frac{\langle \eta (J - J_{BS}) \bullet B \rangle}{\langle B \bullet \nabla \varphi \rangle} = \frac{V_L}{2\pi}$$

• Using this constraint, stability boundaries can be mapped out

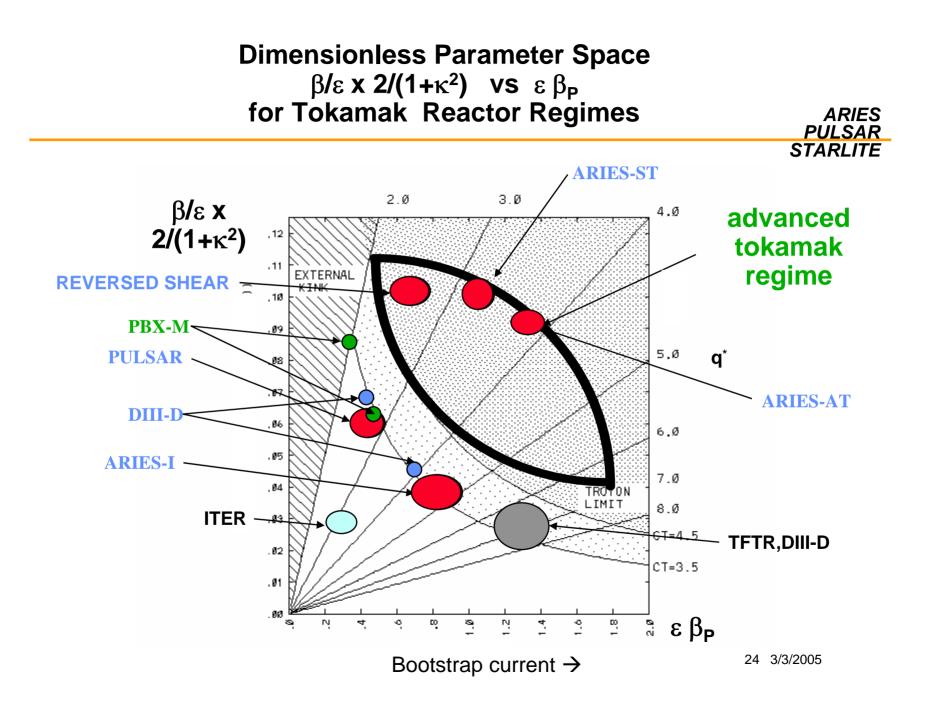
- Depend only on ϵ , q*, and density and temp. profile form factors 9000 s burn with 200 s OH recharge, during which thermal reservoir is tapped

A=R/a=4,
$$I_{BS}/I_{P}$$
=.34, β =2.8%, q_{0} =0.8

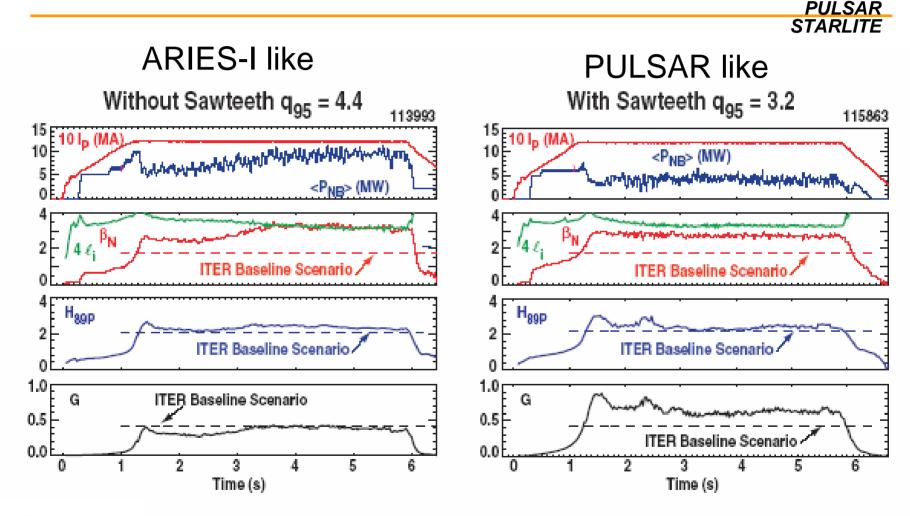
ARIFS

STARLITE

 $C_{\tau}=3.0$



- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions


Reactor Operating Modes

	1ST STABILITY REGIME-wall stabilization not required	2ND STABILITY REGIME-wall stabilization of kink modes
STEADY STATE	MODERATE β MODERATE β _p ARIES-I	HIGH β HIGH β_p ARIES RS, AT, ST
PULSED	HIGH β LOW β _p PULSAR	NOT POSSIBLE

ARIES PULSAR STARLITE

Both the AIRES-I and PULSAR operating modes have demonstrated stationary high performance on DIII-D

M Wade, June 2004

25 3/3/2005

ARIES

- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions

Comparison Chart between PULSAR and ARIES-I'

ARIES PIJLSAR

Physics assumptions of the two first stability devices are the same (except non-inductive current-drive physics).

		STARLITE
	PULSAR	ARIES-I'
Current-drive system	PF system very expensive, but	Non-inductive drive
	efficient, separate system for heating	Expensive & inefficient, used also for heating
Recirculating power	Low	High due to RF
Optimum Plasma Regime	Moderate Bootstrap, High A, Low I	High Bootstrap, Higher A, Lower I
Current Profile Control	No, 30%-40% bootstrap fraction	Yes, 65-%-75% bootstrap fraction
	$β_N \sim 3, \beta \sim 2.8\%$	β _N ~ 3.3, β ~ 1.9%
Toroidal-field Strength	Lower because of interaction with cycling PF (B ~ 14 T on coil)	Higher (B ~ 16 T on coil)
Power Density	Low	Medium
Size and Cost	High (~ 9 m major radius)	Medium (~ 8 m major radius)
Energy Storage	Yes, Shield	No need 27 3/3/2005
Disruptions	More frequent	fewer

- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions

Many Critical Issues and dependencies have been uncovered by the ARIES Studies

MHD Regime:

- tradeoff β for I_{BS}/I_{P} (and alignment) and hence circulating power
- operate at 90% of β-limit to reduce disruption frequency
- severe constraints on close-fitting shell and n>0 feedback
- effect of ohmic-profiles on stable β in non-CD machine
 - has implications for ITER

Plasma Shaping:

- plasma elongation limited by control-coil power and location
- plasma triangularity restricted by divertor geometry

Current Drive:

- need for efficient off-axis CD (other than LHCD)
- CD frequency also important for wall-plug efficiency
- minimize coverage of RF launchers to avoid affecting tritium breeding

Divertors:

• radiated power needed to reduce power to divertor

STAR

- Overview of the ARIES studies
- Description of ARIES-I
- Description of PULSAR
- Relation of ARIES-I and PULSAR to the other ARIES designs
- Comparison of ARIES-I and PULSAR
- Some of the lessons learned from the studies
- Summary and conclusions

- Both the ARIES-I and PULSAR designs are very close to the achieved physics data base
- Both steady-state and pulsed power plants tend to optimize at larger aspect ratio and low currents
- Even though the plasma β is larger in a pulsed tokamak, the fusion power density (wall loading,etc) would be lower because the magnetic field at the coil would be lower
- A major innovation of the PULSAR study is the low-cost thermal storage system using the outboard shield
- The magnet system and fusion power core are much more complex in a pulsed-plasma tokamak, but there is no CD system
- Assuming the same availability and unit costs, PULSAR is about 25% more expensive than a comparable ARIES-I class device
- These designs provide an important backup if the more aggressive "Advanced Tokamak" designs prove impractical

AST 558: Graduate Seminar - "Prospects for Fusion Energy"

	ARIES PULSAR		
February 7	STARLITE A Brief History of Fusion and Magnetic Fusion Basics - Meade		
February 14	Recent JET Experiments and Science Issues - Strachan		
February 21	Advanced Tokamaks FIRE to ARIES - Meade		
February 28	The ARIES Power Plant Studies – Jardin		
March 7	IFE basics and NIF - Mark Herrmann(LLNL)		
Midterms and Spring Break			
March 21	The FESAC Fusion Energy Plan - Goldston		
March 28	Fusion with High Power Lasers – Sethian(NRL)		
April 4	ITER Physics and Technology- Sauthoff		
April 11	Stellarator Physics and Technology - Zarnstorff		
April 18	"New" Mirror Approaches for Fusion - Fisch		
April 25	ST Science and Technology – Peng		
May 2	FRC Science and Technology - Cohen		

Lesson # 1: It's β/ϵ (i.e. $\beta R_0/a$) that's important, not β ! ARIES PIJI SAR STARLITE **MHD** Theory SC Reactors 1. Large aspect ratio expansion $B_T = \mu_0 I_{TF} / 2\pi R$ of MHD perturbed energy δW TF coil shield Plasma is limited by it's B_T shows that β enters only as β/ϵ value at the edge of the TF coil, (reduced MHD) $R \sim R_0 - 3a/2$ R 2. Troyon scaling may be ► R₀ ▶ R₀- 3a/2 written in dimensionless form **Power Density:** as: 0.12

 $P \sim \beta^2 B_T^4$

MHD Figure

 $= (\beta/\epsilon)^2 (\epsilon B_T^2)^2$

 $\beta/\epsilon < C_T S/(20q^*)$

Here, the right hand side is independent of ϵ . C_T = 3.5 is the Troyon coefficient, $q^* > 2$ is the cylindrical safety factor, and $S=(1+\kappa^2)/2$ is the shape factor.

0.1 0.08 ϵB_{τ}^2 0.06 0.04 0.02 0 0.15 0.2 0.25 0.3 of merit independent of ε for B_{τ} at the TF $\varepsilon = a/R$ coil held fixed 33 3/3/2005

Lesson # 2:

Non-Inductive current drive is very costly ! ARIES

 $\mathbf{I}_{\text{CD}} = \gamma_{\text{CD}} \left(\mathbf{P}_{\text{CD}} / \mathbf{n}_{\text{e}} \mathbf{R} \right)$

I_{CD} = Total non-inductively driven current (A)

P_{CD} = Power to plasma by CD system (W)

 n_{e} = average density (in units of $10^{20}/m^{3}$)

R = major radius (m)

 γ_{CD} = CD figure of merit

- Theoretical calculations show $\gamma_{CD} \alpha T_e^n$ with 0.6 < n < 0.8
- Highest values to date for γ_{CD} are 0.45 (JET with ICRF+LH) and 0.34 (JT-60 with LHCD). Note that for a Reactor with I_{P} =20 MA, n_{e} = 1.5 x 10²⁰, R = 8 m, γ_{CD} = 0.34, this gives

 P_{CD} = 700 MW to the plasma.

- This is unrealistic for a 1000 MW Power plant, since wall plug power is much higher (several efficiencies involved)
- **M** most of the plasma current must be self-generated (bootstrap) for a non-inductive reactor

PULSAR