Power and Particle Control Lessons Learned on DIII-D

> S.L. Allen and the DIII–D team Burning Plasma Workshop

Detached divertors for particle and power handling

We have a reasonable scientific basis for a conventional long-pulse tokamak divertor solution at high density (collisional edge, detached)

- Low Te recombining plasma leads to low heat and particle fluxes at wall
- Adequate ash control, compatible with ELMing H–mode confinement
- Appropriate for future tokamaks (e.g. to high density ITER-RC)
- Concerns about <u>simultaneously</u> handling disruptions/ELMs and tritium inventory which shorten divertor lifetime

The challenge is to find self consistent operating modes for other configurations ...

(U.S. Snowmass working group, July 2000)

DIII–D divertors can compare open (low- δ) and closed (high- δ) operation with flexible pumping

NEW CRYOPUMP AND BAFFLE STRUCTURE ADDED TO UPPER DIVERTOR REGION

With available ECH power on DIII–D, density and impurity control are critical - these are provided by the divertor

OUTER PUMP EXHAUST PEAKS WHEN STRIKE POINT IS AT THE PUMP APERTURE

J. Watkins, SNL 112-00/jy

Impurity Control In AT Plasmas With Careful Tile Shaping

NATIONAL FUSION FACILIT SAN DIEGO

Magnetic balance can be used for power and particle control

AT Scenario Uses Divertor Shapes For Real-time Control

DESIRABLE DENSITY CONTROL IS ACHEIVED IN DOUBLE NULL SHAPES BY BIASING THE CONFIGURATION TOWARDS THE UPPER DIVERTOR

RDP 2000 is a closed divertor and reduces core ionization source (even without cryopumping)

Puff And Pump In Both The Open And Closed Divertors

NATIONAL FUSION FACILITY SAN DIEGO

103-00 jy

New physics in the x-point and private flux region

Advances in detached plasmas by this community have made possible a high density divertor solution (with some caveats, of course!) ...

- Now divertor particle control is vital for AT modes
- Shaped plasmas are "standard", needed for high performance
- Real Time Shape control enables H-mode power threshold control, particle control
- Current profile control (ECCD) is at the heart of the AT, *Impurities* are important!

Heat flux control in AT plasmas is expected to require impurity flow control

- "Puff and Pump" or active flow control, need progress in understanding flows
- Lots of new, exciting physics in the pedestal and x-point region

Experience gained in lower divertor (with DTS) is applied to upper divertor (with simplified diagnostics)

Attached Plasma at Low Density

Detached Plasma at High Density

