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Fueling and pumping system functions

• to provide hydrogenic fuel to maintain the plasma density profile for
the specified fusion power,

• to replace the deuterium-tritium (D-T) ions consumed in the fusion
reaction,

• to establish a density gradient for plasma particle (especially helium
ash) flow to the edge,

• to supply hydrogenic edge fueling for increased scrape off layer flow
for optimum divertor operation,

• to inject impurity gases at lower flow rates for divertor plasma
radiative cooling, wall conditioning, and for plasma discharge
termination on demand.

• To exhaust He ash at the rate it is produced and DT at approximately
the fueling rate at a pressure consistent with divertor operation.
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Fueling program scope

• Gas fueling prototype for ITER

• Pellet fueling development
• H, D, T, Ne, Ar, Xe cryogenic solid pellets

• Size from ~0.5 mm to 10 mm

• feed rates from single shot to 0.26 g/s (ITER)

• speeds from 100 to ~4000 m/s

• US-related plasma fueling experiments:
• ORMAK, ISX, PDX, DIII, PLT, TEXT, PBX, TFTR, JET, TORE

SUPRA, DIII-D, GAMMA 10, LHD, MST (2001), NSTX (2002)

• Particle control and fueling physics; example: outside, inside and
vertical launch on DIII-D

• Disruption mitigation and impurity fueling development

• Fueling system design for ITER and FIRE
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Burn Fraction Definition
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Burn Fraction Considerations
• For ITER-FEAT, the fueling system provides D-T plasma fueling at a

steady-state rate of 200 Pa-m3/s.

• The fuel rate to replace the D-T ions consumed by the fusion reaction
is quite modest, about 1 Pa-m3/s for a fusion power of ~750 MW.

• The resulting burn fraction is thus only 0.5% of the steady-state fueling
rate.

• This is much lower than is typically used (assumed) in reactor studies:
STARFIRE-42%, DEMO-10%, ARIES-1:19%

• A low burn fraction implies high D-T throughputs, large vacuum
pumping and fuel processing systems with associated large tritium
inventories and higher tritium breeding ratios.

• Ways to increase the burn fraction:
– isotopic fueling,

– efficient He ash exhaust without requiring large D/T flows,

– others??
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TPOP-II tritium extruder experiments

Highlights

• Demonstrated first extrusions of solid
tritium at Tritium Systems Test
Assembly Facility at LANL;

• Produced world’s largest pellets: 10
mm D, DT and T pellets (full scale for
ITER);

• Processed over 40 grams of tritium
through TPOP-II;

• Developed isotopic fueling concept to
reduce ITER tritium throughputs and
inventory.

Pure Tritium Extrusion Pure Tritium Pellet
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Isotopic Fueling:
• minimize tritium introduced into torus
• but maintain Pfusion (fuel rates shown typical of reactor)

Tritium-rich pellet
      ~ 50 Pa-m3/s

Deuterium gas
      ~ 150 Pa-m3/s

75 % D / 25 % T gas
      ~ 200 Pa-m3/s

60 % D / 40 % T
in core plasma
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Isotopic fueling model results are promising

Figure 2
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Figure  1
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• Isotopic fueling provides a radial gradient in the T and D densities.

• The magnitude of the effect depends on the separation of the two
fueling sources.

• In-vessel tritium throughputs and wall inventories can be reduced by
about a factor of two or more.

• This can ease requirements on the tritium breeding ratio.

• M. J. Gouge et al., Fusion Technology, 28, p. 1644, (1995)
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Efficiency of gas fueling much less than
pellet fueling

Device Gas Fuelling

Efficiency

(%)

Pellet

Fuelling

Efficiency

(%)

Remarks

ASDEX 20 30-100 high density

PDX 10-15 high density

Tore Supra 1 30-100 ergodic divertor

for gas fuelling

JET 2-10 20-90 active divertor

JT-60

JT-60U

TFTR 15 low density DT

ASDEX-U 8-40

DIII-D 10 40-100 active divertor
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Pellet fueling efficiency has a broad range

� Encouraging initial high field launch experiments on ASDEX-U
� implications for FIRE

� ongoing experiments on ASDEX-U, DIII-D, Tore Supra, JET, LHD

HFL AUG

LFL AUG
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Fueling Conclusions

• Innovation and R&D in plasma fueling systems continues to
positively impact future MFE devices

– isotopic DT fueling: reduced tritium throughput, wall inventories

– high-field-side launch: increased fueling efficiency, profile peaking
for approach to ignition and high-Q burn


