Plasma Fueling and Pumping: Burn Fraction & Fueling Efficiency

M. J. Gouge, C. A. Foster and P. W. Fisher Oak Ridge National Laboratory

> Burning Plasma Workshop May 1-3, 2001

MJG/PWF, 5/01

Fueling and pumping system functions

- to provide hydrogenic fuel to maintain the plasma density profile for the specified fusion power,
- to replace the deuterium-tritium (D-T) ions consumed in the fusion reaction,
- to establish a density gradient for plasma particle (especially helium ash) flow to the edge,
- to supply hydrogenic edge fueling for increased scrape off layer flow for optimum divertor operation,
- to inject impurity gases at lower flow rates for divertor plasma radiative cooling, wall conditioning, and for plasma discharge termination on demand.
- To exhaust He ash at the rate it is produced and DT at approximately the fueling rate at a pressure consistent with divertor operation.

Fueling program scope

- Gas fueling prototype for ITER
- Pellet fueling development
 - H, D, T, Ne, Ar, Xe cryogenic solid pellets
 - Size from ~0.5 mm to 10 mm
 - feed rates from single shot to 0.26 g/s (ITER)
 - speeds from 100 to \sim 4000 m/s
- US-related plasma fueling experiments:
 - ORMAK, ISX, PDX, DIII, PLT, TEXT, PBX, TFTR, JET, TORE SUPRA, DIII-D, GAMMA 10, LHD, MST (2001), NSTX (2002)
 - Particle control and fueling physics; example: outside, inside and vertical launch on DIII-D
- Disruption mitigation and impurity fueling development
- Fueling system design for ITER and FIRE

Burn Fraction Definition

ion particle balance:
$$\frac{dn_i}{dt} = S_i - \frac{n_i^2 < \sigma_V >}{2} - L_i$$

definition of burn
fraction:
$$f_b = \frac{S_i - L_i}{S_i} \qquad \text{assume: } L_i = \frac{n_i}{\tau}$$

then for steady-state:
$$f_b = 1 + \frac{2}{n\tau < \sigma v > \tau}$$

MJG/PWF 5/01

Burn Fraction Considerations

- For ITER-FEAT, the fueling system provides D-T plasma fueling at a steady-state rate of 200 Pa-m³/s.
- The fuel rate to replace the D-T ions consumed by the fusion reaction is quite modest, about 1 Pa- m^3/s for a fusion power of ~750 MW.
- The resulting burn fraction is thus *only* 0.5% of the steady-state fueling rate.
- This is <u>much lower</u> than is typically used (assumed) in reactor studies: STARFIRE-42%, DEMO-10%, ARIES-1:19%
- A low burn fraction implies high D-T throughputs, large vacuum pumping and fuel processing systems with associated large tritium inventories and higher tritium breeding ratios.
- Ways to increase the burn fraction:
 - isotopic fueling,
 - efficient He ash exhaust without requiring large D/T flows,
 - others??

TPOP-II tritium extruder experiments

Highlights

- Demonstrated first extrusions of solid tritium at Tritium Systems Test Assembly Facility at LANL;
- Produced world's largest pellets: 10 mm D, DT and T pellets (full scale for ITER);
- Processed over 40 grams of tritium through TPOP-II;
- Developed isotopic fueling concept to reduce ITER tritium throughputs and inventory.

Isotopic Fueling:

- minimize tritium introduced into torus
- but maintain P_{fusion} (fuel rates shown typical of reactor)

MJG/PWF 5/01

Isotopic fueling model results are promising

- Isotopic fueling provides a radial gradient in the T and D densities.
- The magnitude of the effect depends on the separation of the two fueling sources.
- In-vessel tritium throughputs and wall inventories can be reduced by about a factor of two or more.
- This can ease requirements on the tritium breeding ratio.
- M. J. Gouge et al., *Fusion Technology*, **28**, p. 1644, (1995)

MJG/PWF 5/01

Efficiency of gas fueling much less than pellet fueling

Device	Gas Fuelling	Pellet	Remarks
	Efficiency	Fuelling	
	(%)	Efficiency	
		(%)	
ASDEX	20	30-100	high density
PDX	10-15		high density
Tore Supra	1	30-100	ergodic divertor
			for gas fuelling
JET	2-10	20-90	active divertor
JT-60			
JT-60U			
TFTR	15		low density DT
ASDEX-U		8-40	
DIII-D	10	40-100	active divertor

Pellet fueling efficiency has a broad range

- Encouraging initial high field launch experiments on ASDEX-U
 - implications for FIRE
 - ongoing experiments on ASDEX-U, DIII-D, Tore Supra, JET, LHD

Fueling Conclusions

- Innovation and R&D in plasma fueling systems continues to positively impact future MFE devices
 - isotopic DT fueling: reduced tritium throughput, wall inventories
 - high-field-side launch: increased fueling efficiency, profile peaking for approach to ignition and high-Q burn

