Effects of Pellet Injection on Density Profiles - DIII-D Results and Simulations of FIRE

W. A. Houlberg ORNL

Burning Plasma Science Workshop II 1-3 May 2001 San Diego, California

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY UT-BATTELLE

High Field Side (HFS 45°) Pellet Injection on DIII-D Yields Deeper Particle Deposition than LFS Injection

- Net deposition is much deeper for HFS pellet in spite of the lower velocity
- Pellets injected into the same discharge and conditions
 - ELMing H-mode, 4.5 MW NBI, $T_e(0) = 3 \text{ keV}$

The Difference Between Ablation and Net Deposition Profiles Indicates Major Radius Drift of Ablatant

• The net deposition profile is consistent with a major radius drift from the calculated ablation profile

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

HFS Pellet Injection on DIII-D Yields Deeper Particle Deposition than Predicted by Ablation Model

- HFS and vertical injection show deeper than expected deposition of pellet mass from simple ablation model
- LFS pellet maximum deposition depth agrees with simple model

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Locally Applied Global Confinement Model

- Neoclassical plus anomalous transport
- Fixed anomalous conductivity and diffusivity profiles:
 - Normalized to yield global L-mode confinement (ITER-97L):

 $\tau_{E}^{97L}(s) = 0.023 \ I^{0.96} \ B_{t}^{0.03} \ P^{-0.73} \ n_{19}^{0.40} \ M^{0.2} \ R^{1.83} \ \epsilon^{-0.06} \ \kappa^{0.64}$

where I is the plasma current in MA, B_t is the toroidal field in T, P is the heating power in MW, n_{19} is the electron density in 10^{19} m⁻³, M is average ion mass in AMU, R is the major radius in m, $\varepsilon = a/R$ is the inverse aspect ratio, and κ is the plasma elongation

S.M. Kaye and the ITER Confinement Database Working Group, Nucl. Fusion 37, 1303 (1997)

- Profile: $\chi_{\iota}(\rho) = \chi_{e}(\rho) = \chi(0)[1+4\rho^{2}]$, $D(\rho) = \chi(\rho)/2$
- Ion Temperature Gradient (ITG) transport would show a richer profile variation due to dependence on temperature and density gradients
- D, T and He recycle:
 - 90% of outgoing flux recycled inside separatrix

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

L-H Transition Model

• L-H transition power threshold (IPB98-4):

 $P_{thr}(MW) = 0.082 n_{20}^{0.69} B_t^{0.91} S^{0.96} M^{-1}$

where n_{20} is the electron density in 10^{20} m⁻³, B_t is the toroidal field in T, S is the surface area at the separatrix in m⁻³, and M is average ion mass in AMU

ITER Physics Basis, Nucl. Fusion **39**, 2175 (1999)

- Suppress edge transport when power across separatrix exceeds the threshold, P_{sep} > P_{thr} :
 - By a factor of 5 for $0.95 < \rho < 1.0$
 - ELM effects are lumped into the suppression factor
 - Generally this gives an H-factor ~ 2

Alpha, Auxiliary Heating and Fueling Models

- Inside pellet launch:
 - Assume uniform Δn profile
 - Similar to DIII-D observations

L.R. Baylor, et al., (Proc. 18th Int. Conf., Sorrento, 2000) IAEA, Vienna

- Fast wave ICRF:
 - Empirical match to strong and weak absorption limits

W.A. Houlberg, S.E. Attenberger, Fusion Technol., 26, 566 (1994)

- Ehst-Karney current drive

D.A. Ehst, C.F.F. Karney, Nucl. Fusion, 31 1933 (1991)

Fusion alphas:

- Multi-group time-dependent classical thermalization

S.E. Attenberger, W.A. Houlberg, Nucl. Technol./Fusion, 4, 129 (1983)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Fusion Ignition Research Experiment Parameters

High field copper machine for burning plasma studies:

Major radius	R ₀ = 2 m
Minor radius	a ₀ = 0.525 m
Toroidal field	B _t = 10 T
Toroidal current	I = 6.44 MA
Elongation	κ = 1.8
Triangularity	δ = 0.4

D.M. Meade, et al., (Proc. 18th Int. Conf., Sorrento, 2000) IAEA, Vienna

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

L-H Transition During Rampup FIRE H-Mode Case

- The fast wave power is ramped up during the current rise phase and held constant at 15 MW from 4-27 s for a high-Q fusion burn
- The P_{sep} > P_{thr} at ~4 s and stays at or above the threshold until the ramp-down phase
- Small oscillations in the fusion power are responses to the fuel pellets
- The fast wave power and/or density can be reduced for lower fusion power studies

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Low Startup Density Facilitates L-H Transition FIRE H-Mode Case

- The low startup plasma density facilitates the L-H transition
- Density ramp keeps P_{sep} > P_{thr}
- The density oscillations are due to pellet perturbations
- Operation is well below the Greenwald density limit

WAH 1 May 2001 10

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Density Profile Peaking is ~1.2 FIRE H-Mode Case

- The plasma profile peaking factors show a wide variation during the different phases
- The density profile:
 - Peaks strongly during the startup phase when direct penetration of the pellets is deep
 - Is moderately peaked (~1.2) during the burn
- The temperature profiles:
 - Peak early in response to the fast wave heating
 - Broaden during the density rise
 - Peak in response to the central alpha heating

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Persistent Reversed Magnetic Shear FIRE H-Mode Case

- The current ramp generates moderate reversed magnetic shear
- The bootstrap current drives a strong shear reversal over the inner half of the plasma radius

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Strong Fusion Sawtooth Oscillations FIRE L-Mode Case

- The confinement is assumed to stay in L-Mode for the entire simulation
- During the burn P_{sep} < P_{thr}
- The lower operating temperature yields lower bootstrap current and faster current penetation, which leads to sawtooth activity beginning at ~12.5 s
- The amplitude of power fluctuations from sawtooth activity is much stronger than that from pellets

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Stronger Density Peaking FIRE L-Mode Case

- L-mode operation leads to stronger density peaking (~1.7) even in the presence of sawtooth activity because of the lower particle confinement and increased rep rate for pellet fueling
- Density peaking in L-mode improves the fusion rate over flat densities from gas fueling
- Axial temperature fluctuations are very large from sawtooth activity

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Summary

- Flexibility in the B_t, I, n, and P_{aux} and fueling rates during rampup can be used to:
 - Reduce the L-H transition threshold
 - Access a range of reversed magnetic shear conditions
- Inside launch pellet injection:
 - Yields moderate peaking in H-mode plasmas (~1.2) because of the good particle confinement and weak refueling requirements
 - Yields stronger peaking in L-mode plasmas (>1.5) to give an extra margin for performance
 - Should generate much smaller oscillations than sawtooth activity
 - May enhance ITBs (not included in these studies)
- Reversed magnetic shear conditions:
 - Can be initiated by tailoring startup
 - Are enhanced by bootstrap current in high confinement plasmas

