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A simple systems power balance analysis provides
a rational for optimizing the design point

Confinement (Elmy H-mode) ITER98(y,2):

TE =(.144 1093 R1.39 0.58 n200.41 BO-15 Ai0.19 KO- 78 P heat -0.69 H(y’z)

Density Limit: Ny, < 0.75 ngy = 0.75 I/m@?
H-Mode Power Threshold: P, > (2.84/A)) n, "8 B082 R 208!
MHD Stability: By= B/ (I/aB) < 1.8

Engineering Constraints: 1. Flux swing requirements in OH coil (V-S)
2. Coil temperature not exceed 373° K
3. Coil stresses remain within allowables

Configuration Concept: 1. OH coils interior to TF coils, or

2. OH coils exterior to TF coils
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Plasma Current required for power balance vs A

By=15, q,=3.13,Q=10,k=1.8, H ,=1,1,=20s
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FIRE* 10T, 2.14m, 7.7 MA, H(y,2) = 1.14, ¢ = 0.2

40.75 ng,



TSC was used recently to model the NSTX current evolution for a Toroidal
Field scan series in order to establish the correlation between .
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» TSC could reproduce the plasma current evolution using only the experimental
values of the PF current trajectories. Everything else is predictive

 Supported the correlation between the g=1 surface and termination of the current
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TSC Simulation of Reference FIRE™
Discharge with Burn Control
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Why a 20 sec discharge ?

T~ | sec (energy confinement time)
Other timescales of interest:
* Current redistribution time ~ 10 s
e Burn control time ~ 5-10 s
e Helium Ash buildup time ~ 5-10

These transient phenomena and others being
studied with TSC
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TSC simulation of LHCD added to reference discharge
shows 1t takes 10-20 sec to equilibrate
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e 1.75 MA LHCD turned
on att=15s

 requires over 10 sec for
current profile to adjust as
seen by q=1 radius and 1.
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Comparison of 3 TSC FIRE simulations where T, 1s
changed suddenly at t=15 from 51 to 10T or 501,
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* natural equilibration
time for helium ash 1s
10-20 sec

* note, shows the
importance of particle
control in divertor

< Power required to

keep stored energy at
40 MJ



Fire Heating and CD systems

 Ion Cyclotron system

» Baseline system, heating only
* 30 MW to the plasma
100 — 150 MHz for 2Qp Q. , H or He’ minority

* High Frequency Fast Wave

» Optional /Partial replacement for ICRH

Antenna seen from plasma
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FIRE is considering both vertical and inside launch to allow
deep pellet penetration

® first 3D simulation of this
experimentally discovered
phenomena was in M3D

[Strauss, Park, et al, Phys. Plasmas
7 (2000) 250]

* led to development of 2D
model now in TSC code

[Jardin, Schmidt, et al, Nucl.
Fusion 39 (2000) 923]




MHD Stability of Baseline Discharge

=> Baseline operating regime has very low 3y (~1.5 to 2.0) and
qe > 3.1, and therefore has good stability margins

However, there are areas requiring additional R&D:

 m=1 internal mode (monster sawtooth)

Neoclassical tearing mode (NTM)
Edge Localized Modes (ELMs)

Energetic particle modes

MHD stability limits for AT modes



Physics Question: Role of the m=1 mode

* FIRE will have a g=1 surface at 0.3 <r/a <0.5 and will exhibit m=1
(sawtooth)

 The question is when this mode couples to other modes and leads to a NTM
or a disruption

* 3D Extended MHD simulation taking part as part of the SCIDAC initiative
are studying the m=1 mode in a burning plasma, taking into account:

* energetic particle drive,

 kinetic stabilization,
o 2-fluid effects, and
* non-linear saturation mechanism

* This 1s one of the major thrusts of the 3D macroscopic simulations
communities..similar to turbulent transport simulations in transport community

* LHCD can provide some control on this by decreasing the q=1 radius



High Field: 12T, 7.7 MA

Balloon and Mercier stability
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Radius of g=1 surface can be decreased by application of LHCD near edge
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Physics
question: NTM

® neoclassical tearing mode sets
B limits in many long-pulse
discharges

» scaling of this to new devices
largely result of empirical fitting
of quasi-linear formula

» present scaling indicates that*
FIRE will be stable to the NTM
in the ignition regimes 1.5 < 3y
<1.8

* this is another major thrust of
3D macroscopic modeling effort

* LHCD active feedback looks
feasible if needed (PHR)
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High-N non-perturbative Alfven mode
Stability Calculations (HINT)

Apply fully kinetic code HINST for baseline FIRE parameters:

Convetnional shear profile & = 2,m, a = 0.525m, B = 107, I, = GA5MA;

5ose 0N — sl gy = = T

. T T T T T 1

classical slowing down | ]
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Resonant TAEs are stable if B, < 3. = 0.66% =>n_, > 7.5 x10%0

Relaxed profiles are stable up to 3., =1%, n , > 6.3 x10%°



FIRE Can Access Various Pulse Lengths by
Varying BT
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Mote: FIRE is = the same physical size as TPX and KSTAR.
At Q = 10 parameters, typical skin time in FIRE is 13 s and is 200 s in ITER-FEAT .



FIRE will have many features for AT operation

AT Features

» DN divertor

= strong shaping
= very low ripple
= internal colls

» space for wall
stabilizers

«* Inside pellet
Injection

» large access ports

%

Wedged TF Coils (16), 15 plates/coil*
, Inner Leg BeCu C17510,
] remainder OFHC C10200

g COompression Ring

il 5. _eeDouble Wall Vacuum
G Vessel (316 5/S)

D-—Au PE and CS Coils®
OFHC C10200

Internal Shielding
( 609% steel & 40%water)

\ertical Feedback Coil

I~ 0

Passive Stabilizer Plates

space for wall mode stabilizers

//”,’f : / W-pin Outer Divertor Plate
[ ]

Cu backing plate, actively cooled

Direct and Guided Inside Pellet Injection

*Coil systems cooled to 77 "K prior to pulse, rising to 373 "K by end of pulse.



FIRE 1s Examining Ways to Feedback Control
RWM/Kink Modes

view of hoizontal port front looking from plasma side

* Design will

incorporate what 1s

leamed from DII I_D Copper Stabilizing Shell
{backing for PFCs)

and COlumbla 1st Vacuum Shell
experiments

horizontal port
(1.3 mx 0.65 m)

port shield plug (generic)

resistive wall mode
stabilization coil
{embedded in shield plug)

2nd Vacuum Shell  _



Identification of AT Targets for FIRE

* Long pulse AT modes are targeted to operate at reduced field (8.5T) for
about 40 sec ( > 3 Skin Times)

* We can project backwards from Standard Operating Modes to get
requirements on [3y and H(y,2) for AT modes:

Stored Energy: W ~ B2~ (3,IB

Energy Confinent time: T; ~ H(y,2) [, n*! B!
~ H(y,2) I,' B 15



Normalized Beta 3,
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have the same stored
energy for the 3
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contours.
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Magnetic Field B, (T)

Q=5, B=10,1,=6.44, H=1, [3,=2.1 base case

H(y,2) Multiplier for Q=5
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The operating points
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AT modes need H factor in range 1.2 —
1.6 for same confinement time in sec.



FIRE"s Performance With Projected Confinement
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FIRE Operating modes are within the Existing H-mode
Database for both density and energy confinement
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FIRE should be able to access AT Plasmas requiring both

high By and high H(y,2)
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Progress Toward ARIES-like Plasmas
will Require a Sequence of Steps
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FIRE can test advanced modes used in advanced reactor designs
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Summary

* There are no apparent physics showstoppers
* FIRE design is near optimal for Next-Step Mission

* FIRE will demonstrate and study high Q operation over a
broad range of parameters for all relevant physics timescales

 High Q operation at low (3 values down to ~1.5 greatly
increase credibility of the device
* There is great science to be learned. Eg., in the MHD area:
* How does core self-organize with a’s and m=1 mode?
* How does edge self-organize with bootstrap and ELMs
» Behavior of the neoclassical tearing mode at low ( p*,v*)
« How well can our codes predict these nonlinear events ?



