A Simple Approximate Q scaling Suitable For Comparing Devices

Ed Lazarus Oak Ridge National Laboratory

presented at 2nd Burning Plasma Workshop, San Diego May 1-3, 2001

A simple scaling for fusion gain is desirable for for comparing devices

Separate Q into factors

Size : B-R Shape : Ŝ

Plasma Physics : τ_E , (β^*/β) , safety factor

$$\mathbf{Q}_{\mathsf{D}\mathsf{D}} = \frac{\mathsf{P}_{\mathsf{fusion}}}{\mathsf{P}_{\mathsf{IN}}} \cong \mathbf{C}_{\mathsf{f}} \frac{\int [\mathsf{T}_{\mathsf{i}}\mathsf{n}_{\mathsf{i}}]^2 \mathsf{d}\mathsf{V}}{\mathsf{P}_{\mathsf{IN}}} , \text{ where } \mathbf{C}_{\mathsf{f}} = \frac{1}{2} \frac{\langle \sigma \mathsf{v} \rangle}{\mathsf{T}_{\mathsf{i}}^2} \xi_{\mathsf{f}}$$

Introduce β to replace $n_i T_i$:

$$\mathbf{Q}_{\mathsf{DD}} \cong \left(\frac{\beta^*}{\beta}\right)^2 \frac{\mathsf{V} \ \beta^2 \ \mathsf{B4}}{2 \ \mu_0 \ \mathsf{P}_{\mathsf{IN}}} \text{ and use V=(2 π R) π a^2 κ}$$

Use a slight modification of DIII-D/JET scaling for confinement, with an enhancement factor

$$\tau_{\rm E} = 1.1 \times 10^{-4} \, {\rm H} \, \frac{{\rm lp} \, {\rm R}^{3/2}}{\sqrt{{\rm P}_{\rm IN}}} \frac{\sqrt{\kappa}}{\sqrt{1.8}}$$

Introduce shape parameter to remove plasma current

$$\hat{S} \equiv q_{\psi} \frac{\mu_0 I_p}{2\pi a B}$$

By analogy: $\varepsilon = \frac{a}{R} = q_{Cyl} \frac{\mu_0 l_p}{2\pi a B}$, \hat{S} is a generalized inverse aspect ratio. Once ε is chosen, $(\ell_i \hat{S})$ is bounded by n=0 stability. $\frac{\hat{S}}{q}$ is, of course, simply $\frac{l}{aB}$, but I don't know how to interpret the latter. I do know the meanings of \hat{S} and q.

Combine these and assume Te=Ti,

$$Q_{DD} = Constant \cdot R^2 B^2 \left(\frac{\beta^2}{g^2} \right) \left(\frac{\beta^*}{\beta} \right)^2$$

(Nuclear Physics SIZE SHAPE PLASMA PHYSICS)

Tokamak	DIII-D (double- null)	DIII-D (single- null)	TFTR	JT-60U	JET
Discharge	87977	88964	68522	17110	26087
B (T)	2.15	2.15	5.00	4.40	2.80
R (m)	1.67	1.69	2.50	3.05	2.95
Ŝ	1.42	1.03	0.35	.50	0.76
(β [*] / β)	1.26	1.14	1.73	1.41	1.34
Η	2.2	2.6	1.6	1.9	2.4
<u>Η-(β*/β)</u>	<u>2.8</u>	<u>3.0</u>	<u>2.8</u>	<u>2.7</u>	<u>3.2</u>
q	<u>4.2</u>	<u>3.7</u>	<u>3.8</u>	<u>4.0</u>	<u>3.8</u>
τ _{E(s)}	0.40	0.43	0.19	0.54	1.30
β (%)	6.7	5.8	1.0	1.5	2.2
$\mathbf{Q}_{\mathbf{dd}}^{*}$	0.0020	0.0016	0.0021	0.0037	0.0051

Fit D-D fusion reactivity for several tokamaks.

Notice that the product of peaking and enhancement factors, <u>H·(β^*/β), shows little variation.</u>

On Average H·(β^*/β)≈3. Fit using this value:

Note that all the data are at $q \approx 4$ and all are transient discharges

But all DT designs (except Ignitor) intend to operate at q=3. Based on DIII-D experience, I think H·(β^*/β)≈ 1.5 is a better guess for q=3. (This is also consistent with the difference in JET transient and stationary plasmas.) Using $Q_{DT} \approx 200 \cdot Q_{DD}$ my estimate based on the fit and the assumptions above is $Q_{DT} = 0.105 R^2 B^2 \left(\frac{\hat{S}^2}{q^2}\right)$

Assume cost scales with size, R^2B^2 Then the <u>bang for the buck</u> is Q/(BR)² leading to the next figure.

I think this is how Q will scale between devices.

I do not claim that the numerical factor, 0.105, is more than approximate.

At q = 3, scaled to R·B=20, 72475 would be 20 MA for Q >12. However experience suggests $\beta \cdot \tau_E$ optimizes at q \approx 4 => 15 MA would be better.

Opinions

- If the mission is to test technology then a superconducting device is reasonable. Eddy current heating of superconducting coils appears to limit shaping. Large B²R² would appear the only solution. Since B is limited to low values (compared to copper) the device will be justplain-big.
- If the mission is to learn about the physics of a burning plasma then the situation changes considerably. As an experiment it should try to optimize "bang for the buck". Great gains can be made by increasing Ŝ.
- Perhaps a plasma like shot 72475 is too aggressive. This was the only shot like this. (It was also the only attempt.) But 87977 is a shape that is run day in and day out on DIII-D.
- The engineering task for strong shaping is challenging. For such dramatic potential gain we should try much harder to increase \hat{S} .