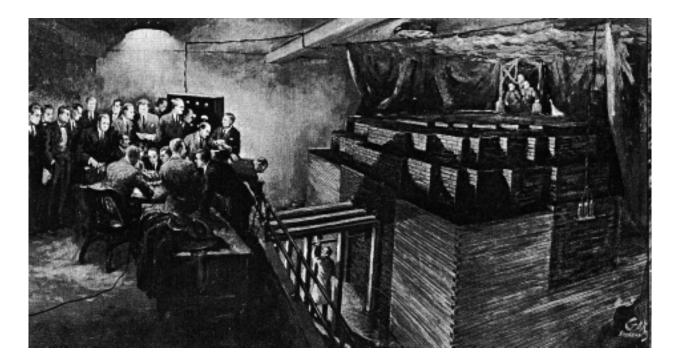
Ignition/Burn is a Done Deal – Or is It?

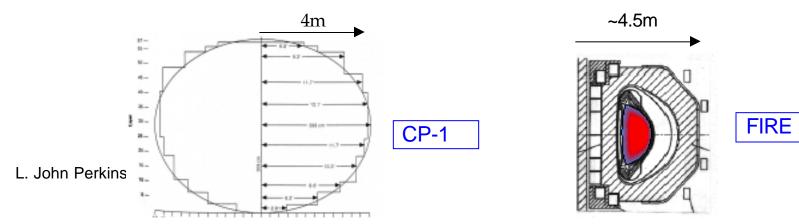
The Experience of Fission's "Ignition/Burn" Experiment

L. John Perkins Lawrence Livermore National Laboratory

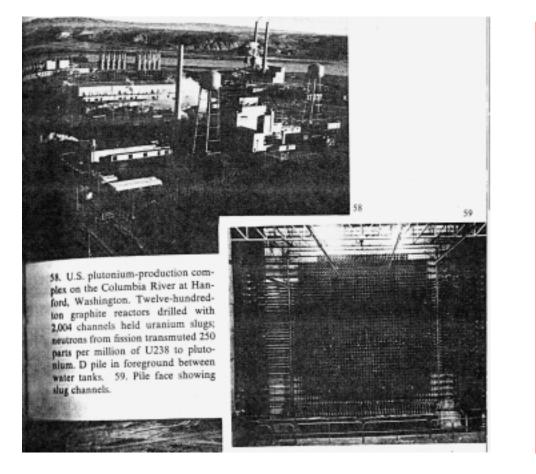
UFA Burning Plasma Science Workskop II General Atomics, San Diego CA May 1-3, 2001

The Rapid Advance of Fission's "Burning Plasma" Science




- **1932** *Chadwick (UK)* discovers the neutron
- **1933** *Szilard (UK)* conceives of nuclear chain reactions (and files a patent)
- **1935-7** Fermi (Italy), Joliot-Curies (France) study fast and thermal neutron-induced reactions (and both miss fission!)
- - ◆ *Bohr-Wheeler (US)* theory of fission; resolution of U²³⁵/U²³⁸ fast/thermal puzzle
 - ◆ Zinn & Szilard (US) measure secondary neutrons from fission (⇒ thermal and fast chain reactions are possible)
 - Fermi & Szilard (US) construct exponential sub-critical piles at Columbia
- **1940** *Peierls & Frisch (UK)* make first realistic estimate of ²³⁵U critical mass
- **1942** *Fermi (US)* CP-1 zero power pile critical in Chicago
- **1943** *Fermi/Compton/DuPont* (US) X-10 low power reactor critical in Oak Ridge
- **1944** Wigner/Fermi/Wheeler/DuPont (US) 100-B high power reactor critical at Hanford (fission's "ignition/burn" experiment)
- **1945** • The rest is history!

The First Self-Sustaining ("Q=Infinity") Fission Reactor was Fermi's Pile CP-1


There is No Fusion Analogy (Unfortunately!)

The Hanford Pile B-100 was Fission's "Ignition/Burn" Experiment

There are Interesting Parallels Between the First Burning Fusion and Fission Experiments

Fusion	Fission			
TFTR / JET	Fermi's sub-critical experiments			
(No parallel)	Fermi's CP-1 zero power pile			
ITER / FIRE / Ignitor	Hanford 100-B high-power pile			
Fusion power	Fission power			
Ignition margin	k _{effective} for criticality			
Alpha heating profile	Neutron flux profile			
Initial impurities at plasma start up (H, O, Fe,.)	Moderator and fuel impurities at startup			
Te/Ti profiles	Thermal temperature profiles			
Density profiles	Fuel matrix profile			
Temp. coeffs of reactivity (+ve and –ve)	Temp. coeffs of reactivity (+ve and -ve)			
d <v(t)> /dT</v(t)>	d_t/dE			
d_Other/dT	(Core) temperature-dependent effects:			
	Doppler broadening of resonances			
	Moderator void perturbations,			
Short term transients:				
Alpha slowing down time	Delayed neutron production and thermalization			
Sawteeth/ELMS	Local core oscillations (10's-100's msec)			
Medium term transients:	Direct Carlos and determined			
Alpha ash buildup	Direct fission product poisons			
Impurity influx from walls/divertor				
Long term transients: Long term impurity evolution;	Buildup of poisons from fission product decay			
Current profile evolution	Fuel depletion			
Vertical/horizontal stability (~msecs –seconds)	Gross core oscillations (~seconds)			
Density control	Neutron flux profile control			
Burn control systems	Control rods			
Shutdown control (killer pellets)	Scram rods			
Neutron wall loading	Neutron flux in fuel pin cladding (<<1%! of fusion's)			
Surface heat flux at first wall /divertor	Surface heat flux @ fuel pin(~10% of fusion's)			
Plasma disruption	Core scram (or worse!)			

Will There be Surprises in the BP Experiment(s)? Predicted Performance Sensitivities are Wide-Ranging

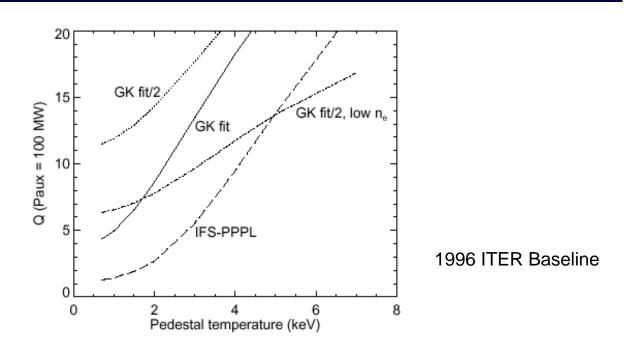


Fig. (8) The predicted fusion gain Q vs. assumed pedestal temperature, for the IFS-PPPL 95 model, for a modified model to fit the gyrokinetic flux-tube results of Fig.3 ("GK fit"), and for a further reduction in χ_i by a factor of 2 ("GK fit/2"). These 3 cases are at 1.5 times the Greenwald density. Also shown is a lower density case at 1.15 times the Greenwald density using the "GK fit/2" χ_i .

A. Dimits et al "Comparison and Physics Basis of Tokamak Transport Models and Turbulence Simulations", Phys Plasmas, **7** 969 (2000)

Will There be Surprises in the BP Experiment(s)? Predicted Performance Sensitivities are Wide-Ranging

Sensitivity of Fusion Power to Some Assumptions

Baseline assumptions:

IFS-PPPL model for $\chi_{i,e}$ modified with $\Delta(R/L_{Tcrit}) = 2$ to roughly fit Dimits shift seen in gyrokinetic simulations.

 $\langle n_e \rangle / n_{\text{Greenwald}} = 0.74$. Modest density peaking, $n_0 / \langle n_e \rangle = 1.18$, $n_{ped} / \langle n_e \rangle = 0.65$. $n(r) = (n_0 - n_{ped})(1 - (r/a)^2)^{0.5} + n_{ped}$.

 P_{aux} adjusted to keep $P_{net} \ge 1.2P_{99L \rightarrow H}$ = 30 MW for baseline FIRE, =57 MW for baseline ITER-FEAT.

	n_0	n_{ped} 10 ²⁰ /m ³	Red keV	P_{fusion} MW	Q	T _{i0} keV	P_{aux} MW
FIRE baseline case	10 ²⁰ /m ³ 6.75	^{10²⁰/m³} 3.6	4.8	264	620.0	18.6	0
$\downarrow T_{ped}$ 30%	6.75	3.6	3.4	142	9.7	15.3	14
flatten n(r)	3.60	3.6	4.8	117	22.0	21.7	5
original IFS-PPPL	6.75	3.6	4.8	155	13.0	12.9	11
original IFS-PPPL $\downarrow T_{ped}$ 30%	6.75	3.6	3.4	69	2.6	10.2	26
ITER-FEAT baseline case	1.09	0.58	2.9	192	5.8	18.3	32
$\downarrow T_{ped}$ 30%	1.09	0.58	2.0	111	2.4	15.5	45
ITER-FEAT with FIRE T _{ped}	1.09	0.58	4.8	381	816.0	23.5	0
ITER-FEAT with FIRE $T_{ped} \downarrow 30\%$	1.09	0.58	3.4	241	10.1	19.8	23

G. Hammett et al. "Exploring Possible High Fusion Power Regimes with the IFS-PPPL Model", UFA Worshop on Burning Plasma Sciences, Austin TX (2000)