

Fusion Technology & Engineering Division

Advanced Magnets and Implications for BPX-II

J.H. Schultz,, P. Titus, J.V. Minervini, B. Smith, M. Takayasu, J.V. Minervini M.I.T. Plasma Science and Fusion Center

Burning Plasma Science Workshop II General Atomics San Diego, CA May 1–3, 2001

Fusion Technology & Engineering Division

- 1) Radiation-resistant insulation
- 2) High-temperature superconductors
- 3) Nb₃Sn

MIT Plasma Science and Fusion Center

Rectation Resistants, High Shear,

SBIR's to CTD, CMI, and Eltron: Highly aromatic organics (Cyanate Ester); Ceramics (ceramic binder before HT, VPI after), better mechanical and electrical FIRE/NSO - 2 x 10¹⁰ for full life/performance

Insulation testing beginning at MIT (Bromberg)

Fusion Technology & Engineering Division

Malozemoff's Laws for J_c, J_{eff}: J_c=9 (Annum-1990); J_{eff} (2001)=99 kA/cm²=990 A/mm² J_{eff}=4 (Annum-Aug 1991); J_{eff} (Dec 2000)=37.3 kA/cm²=373 A/mm²

Malozemoff's Reality-Checked Law

ASC Commercial Tape: J_{eff}=12 kA/cm² (8 kA/cm², reinforced)

Malozemoff suddenly optimistic by 33.3/12, 8 = 2.6x or 4.2x

Typical Wire Properties

Туре	3-Ply Wide		
Thickness	0.305 (+/-0.02mm)		
Width	4.1 (+/-0.2mm)		
Je	>8kA/cm ^{2*}		
Ic	>100A		
Max Stress (77K)	300MPa		
Max Stress (RT)	265MPa		
Max Strain	0.4%**		
Min. Bend Dia.	70mm**		

* at 77K, sf, 1µV/cm
** With 95% Ic Retention

Malozemoff's Reality-Checked Law

At 12.5 % growth in 2001, Malozemoff's Reality-Checked Law it takes:

14 yrs to get to Dec 2000 predicted (unreinforced) & 21 yrs (reinforced)

Fusion Technology & Engineering Division

Jc, Nb3Sn (A/mm²) vs. Bt (T) at 4.2 K, -0.3 % strain

Through ITER, Nb3Sn improved 70 % in 9 years = 6.1 %/year

No large customers outside fusion program, HEP selected NbTi and superfluid He for LHC; ITER EDA cancelled

Fusion Technology & Engineering Division

The Revolution in ND555n

VLHC goal: 3 kA/mm² @ 12 T, 4.2 K x D_{eff}=40 μm (vs. ITER 700 A/mm², D_{eff}=25 μm

Already up to 2 kA/mm², x 3 improvement, J_{eff} up x 5 from 280 A/mm² to 1.4 kA/mm², 71 %/year! (New SSI PM strand: 1 data point-J_{eff}=2270 A/mm² @ 13.5 T!!)

Fusion Technology & Engineering Division

Superconductor-Laced Copper Conductor Concept

Place copper needed for protection/recovery in pure copper strands; major cost benefits for high J_{ceff} strand

Tested in ITER sECRETS (1/3 Cu)

Next-generation coils with only 1/3 or 1/6 sc strands possible out to 12-14 T!

Fusion Technology & Engineering Division

MTS Magnet Design

Medium Temperature Superconductor

10 K < Top < 25 K

Class A: LTS/Nb3Sn at 10 K LDX F-Coil NCSX 2001 (sc option)

Class B: HTS/BSSCO at 20 K LDX L-Coil NCSX 2000 (sc option)

Class C: MTS/MgB₂ at 25 K

VASIMR Mirror (ISS stationing, Mission to Mars)

Medium Temperature Superconductor (MTS) operation with Nb3Sn

 $J_c (2 \text{ T}, 10 \text{ K}) \sim 5500 \text{ A/mm}^2$ $J_c (5 \text{ T}, 10 \text{ K}) = 2800 \text{ A/mm}^2$ (same as NbTi at (5 T, 4.2 K)

 $J_c(12 \text{ T}, 10 \text{ K}) = 800 \text{ A/mm}^2$ (>~ ITER HP-I at (12 T, 4.2 K)

Possibility of replacing NbTi 0-8 T at 10 K Even of replacing "Old Nb3Sn" at 10 K @ 8-13 T

P

MTS Advantage: Dry Enthalpy is Just Right

Enough dry enthalpy for stability Not too much for protection

Can guarantee ramp to 4 T with Nb3Sn and Pb Solder

Toshiba experimenting with ErNi mats, EM up to 1 J/cc at 10 K

LDX F-Coil can be protected passively (PW Wang, A Radovinsky simulations)

Passive protection vanished by 40 K

Protection Problems at High T

	Units	4.2 K (LTS)	10 K (MTS)	35 K (HTS)	Protectability, MTS/HTS
Ср (Си)	(J/kg-K)	0.093	0.863	42.3	49.0
$J^{2}t$ (to 150 K)	$(10^{16} \text{ A}^2 \text{-s/m}^4)$	10.2	10.1	8.0	1.25
V _{propagation} ,norm	$(m/s)/(A/m^2-(W-m/K)^{1/2})$	12.3	2.83	0.123	16.2
Eheater	$(J/kg) (T_{cs}/Top=1.25)$	0.098	2.16	370	171

nce and Fusion Center; April 10-11, 2001

Fusion Technology & Engineering Division

Heavy Ion Fusion Drivers

- potential for revolutionary magnet improvements

(and Stellarators, ST's, Diode Lasers)

- 1) New radiation-resistant insulations should allow 2 x 10^{10} Rad BPX
- 2) RRI + MTS allow near-term neutron shield reduction,

refrig reduction for SC magnet systems

3) Nb₃Sn revolution & SLCC allows "copper-cost" magnet systems out to 12-14 T for near-term BPX

