ITER:opportunities of Burning Plasma Studies

Y.Shimomura ITER Joint Central Team

Burning Plasma Science Workshop Burning Plasma Science Experiment Concepts and Technologies May 1-3, 2001 General Atomics, San Diego, USA

Brief Summary of Input to the Specific Questions

ITER/Y.Shimomura

- 1. How will particle and power exhaust be handled? How well will proposed components withstand the effects of plasma disruptions and other related "off-normal" operational events? (See Janeschitz's view graphs)
- 1.a Particle Exhaust
 Divertor with long legs (> 1m) and large pumps (200 Pam³/s, > 50m³/s for He) F_{core} < N/τ_E ~ 2.5 x 10²²/s~50Pam³/s, F_{divertor} ~2 x 10²⁴/s ~ 4000 Pam³/s
 Detachment is not a necessary condition.
- 1.b
 Heat Exhaust

 Plasma flow to divertor target
 < 60 MW/6m²

 The present design
 20 MW/m2,
 CFC or W

 Very high radiation cooling and detachment are not necessary conditions
but will have to be studies for reactor plasmas.
- 1.cDivertor target material/Disruptions CFC (or W)Early phaseCFCbecause of its compatibility with disruptionsLater phaseWbecause of its longer life time for normal erosionHigh fluence Test : long pulse q₉₅ >3.5 operations with small ELMs

2. What types of heating and current drive are planned and what are the prospects for investigating "steady-state" plasma operation on the relevant plasma time scales?

	Startup	Scenario1	Scenario2	Scenario3	Scenario4
NB (1 MeV,D/H, Variable in.Angle)	33	33	50	50	50
IC (35-62 MHz)	20	40	20	40	20
EC (170 GHz, Steerable mirror)	20	40	40	40	20
LH (~5GHz)	0	20	20	0	40
Total Installed (MW)	73	133	130	130	130

Heating and Current Drive System

Remarks: The total heating and current drive power ≤ 110 MW

A deep fuelling improves significantly the steady state operation. Increase boot strap current and reduce the requirement of active current drive in the outer region as well as improve confinement property.

100 s of burn duration is necessary to study inductive burn.2000 s is necessary to achieve steady state of AT modes from conventional ones.By optimizing current ramp-up, steady-state of AT can be achieved in 200 s.

3. What is the transport or confinement basis and MHD stability basis for reaching the burning regime and what are the uncertainties in reaching the projected operating regimes? How much margin exists for physics or hardware performance contingencies?

3.a Inductive operation for high QELMy H-mode:Empirical scaling $\beta_N < 2$.If NTM, ECCD (20-40 MW)Margin:Plasma density, High field side pellet injection,
Conservative assumptions (χ_i/χ_e , n(r), P_{LH})
and/or, Higher plasma current

3.b Steady state operation

- Q~2 ELMy H-mode with $H_{\rm H} = 1$
- Q>5 Advanced tokamak regimes (see 5)

4. What physics program is envisioned and how will the burning plasma scientific issues be addressed? Will planned diagnostic capabilities be commensurate with science program needs? Will the pulse rate and number and lifetime and provisions for the supply of tritium and maintenance, replacement and/or upgrade of activated components be commensurate with the proposed science program?

4.a High Q burning plasma

The flexibility of ITER will allow research in a large operation space. $(P_{fusion}, Q, n, \beta, pulse length, I_P ---)$ (Confirm predictable operation \rightarrow Explore frontier)

4.b Diagnostics (See Costley's viewgraphs) Large access ports and remote handling capability

4.c Pulse rate/number, Tritium, Maintenance and Upgrade
≤ 2 pulses/hr. > 30,000 full performance shots
External tritium source (If necessary, tritium production in the later phase)
Maintenance: full remote for in-vessel components
Upgrade: in-vessel components/auxiliaries

5. What operational and/or hardware flexibility is incorporated into the design? What capability exists for studying burning plasma AT ("advanced tokamak") regimes? What are the scientific and technology issues involved in such "advanced" operation and how will they be addressed?

5.a The flexibility of ITER will allow research in a large operation space

(P_{fusion}, Q, n, β, pulse length, I_P ---)
(Confirm predictable operation → Explore frontier)
* Inductive operations

150 → 700 MW, n/n_G = 0.5→1, β_N=1.2→2.4, Q = 5→10→20→∞

* Hybrid operations

> 1000 s/500 MW/Q = 5 with reasonable parameters for blanket test (0.77 MW/m²)

* Research of fully non-inductive driven operation aiming at Q = 5

(higher β/higher confinement, methods included in ITER)

- 5.b The high repetition rate and the large number of pulses give flexibility in experimental operation
- 5.c Full remote maintenance of in-vessel components and large size of ports (1.8 m x 2.2 m) give flexibility in hard ware.

5.d Advanced Tokamak Regimes

i) Tools involved

Relatively close conducting wall $(r_P \sim 2m, d_{P-W} \sim 0.6m)$ Saddle coils for stabilizing RWM Current drive and heating (NB/IC/EC/LH, 130/110 MW) Large plasma High field side pellet injectors

ii) Scientific issues

General: Transports, mhd etc.----Specific: Stabilization of high β_N and low l_i plasmas, and Deep fuelling

The technical requirements for the new ITER (ITER-FEAT)

- 1) Demonstrate inductively-driven plasmas at Q 10,
- 2) Aim at demonstrating steady-state at Q_5
- 3) Do not preclude ignition.
- 4) Demonstrate availability and integration of essential fusion technologies, and
- 5) Test components for a future reactor including blankets (>0.5 MW/m², > 0.3 MW·a /m².)

ITER is planned to be the first fusion experimental reactor.

- Flexibility is required to
 - 1) cope with uncertainties,
 - 2) study/optimize burning plasma for various objectives, and
 - 3) introduce advanced features
- Involvement of the world-wide fusion community is essential to
 - 1) use ITER efficiently and
 - 2) promote scientific competition among the Parties

Research on Burning Plasma

1. Inductive Operation

High Q plasma Q~5/10/20/50 ---- Based on standard ELMy H-mode Reduction of divertor heat load and erosion

Radiation cooling, semi-detached, detached divertor operation modes with small ELMs by optimizing plasma, configuration, divertor, fuelling, impurity High density, Peaked density profile, Higher beta, Higher fusion power density,

Higher fast α pressure etc.

Pulse reactor?

2. Long Pulse Operation for Blanket Tests ≥ 1000 s, > 0.5 MW/m2 Low divertor erosion for high fluence tests (Small ELM loss, W divertor target)

3.Advanced Tokamak Modes

Steady sate plasma Higher confinement/beta/density/bootstrap current and peaked density profile Interaction among burn, external H/CD, fuelling/pumping, impurity, transports etc.

Steady State reactor?

ITER Poloidal Field Coils

<u>Correction Coils</u> 6x3, 100-150kA/coil For Resistive Wall Mode ~10G/20kA

Electron Cyclotron System

Equatorial port : standardized port plug for IC/EC/LH

Neutral Beam Injection for ITER

(1 MeV, 16.5 MW/Port) Initial Installation 33 MW, Upgrade 50 MW

Beam Driven Current Profile

ITER Machine Capability

	Reference Performance	Flexibility
I _P (MA)	15 (flat top 400-500 s)	17 (flat top 100-200 s)
Fusion Power (MW)	500 (~2000s)	700 (100-200s)
κ_x/δ_x	1.85/0.49	2.0/0.55(a=1.85m)
Pumping	200 Pam³/s	higher in shorter pulse

	Initial	Possible Upgrade	
NB (MW)	33	50	33
RF (MW)	40	80	100
ECCD for NT (MW)	(20)	(4	0)
Saddle coils for RWM	20KA/10G/2Hz	~50	KA

Divertor/Blanket	Exchangeable concept
Large common ports	14 for blanket tests, RH, Diagnostics, H/CD

Standard Operations: ELMy H-mode

$$P_{LH} = 2.84M^{-1}B_T^{0.82}\overline{n}_e^{0.58}R^{1.00}a^{0.81}$$

$$\tau_{E,th}^{IPB98(y,2)} = 0.144I_p^{0.93}B_T^{0.15}P^{-0.69}n_e^{0.41}M^{0.19}R^{1.97}\varepsilon^{0.58}\kappa_a^{0.78}, \quad \tau_E = H_H \tau_{E,th}^{IPB98(y,2)}$$

(s, MA, T, MW, 10²⁰m⁻³, AMU, m and $\kappa_a = S_x / \pi a^2$)

Profiles of Electron Temperature (T_e), Ion Temperature (T_i), Electron Density (n_e), Helium Density (n_{He})

Conservative Assumptions in Standard Analysis

Ç P Flat Density Profile

$$\mathbf{\hat{Q}} \quad \mathbf{\hat{Q}} \quad \mathbf{P} = \mathbf{P}\alpha + \mathbf{P}_{oh} + \mathbf{P}_{aux} - (\mathbf{P}_{brem} + \mathbf{P}_{cycl} + \mathbf{P}_{line}/3)$$

Radiation Loss ~ 30 %

The confinement Data Base does not include this effect.

 $\tau_{\rm E}$ is under estimated.

P_{LH} is estimated 30% higher.

 $3\text{\AA} \chi_i/\chi_e = 2$

Example:

Fusion PowerÅ 500MWQ: 20-10Alpha HeatingÅ 100MWAdditional HeatingÅ 25-50MWTotal Heating PowerÅ 125-150MWÅ Power required for L-H transoitionÅ 50MW Å jÅ Radiation lossÅ 50MWPower in to Scrape-off-LayerÅ 75-100MWPower to Divertor TargetÅ 30-60MWÅ < 60MW or Å 10MWÅ m²Å</td>Å Maximum allowable heat load : 20MWÅ m² ÅDetached plasma is not a necessary condition.

 $I_{P} = 15 \text{ MA}, \quad H_{H} = 1.0, \quad \tau_{He} * / \tau_{E} = 5, \quad \text{Divertor heat flux Å} \quad 10 \text{ MW} / m^{2}$ $n_{G} (10^{20} / m^{3}) = I_{P} (\text{MA}) / \pi a^{2}, \quad \beta_{N} = \beta (\%) / [I_{P} / aB_{T}]$

Lawson diagram of ITER with n/nG = 0.85.

Hydrogen plasma is operated at 7.5 MA and 2.7 T because of difficulty of L-H transition. Data of the present machines are not ELMy H-mode.

Density is one of the most important parameters

A burn length of ~ 60 s is the minimum to study inductivily driven plasma

 $I_P = 17 \text{ MA}, \langle n_e \rangle = 1.1 \simeq 10^{20} / \text{m}^3 (n_e / n_G = 0.81) \text{ and } P_{ADD} = 73 \text{ MW} (t = 10-13.5 \text{ s})$

Thermal Instability with 17 MA

ability want 171

Control of power excursion by impurity injection

 $I_P = 17 \text{ MA}, \tau_{He}^*/\tau_E = 3, H_H(y,2) = 1.0 \text{ and } 73 \text{ MW} \text{ of heating power (P}_{ADD}) \text{ is added from 10s to 13.7s:}$ solid line - with argon (Ar) impurity seeding, dotted line - without impurity seeding

Examples of ITER-like Discharges

(Example)

JET	Pellets	Ar seeded	q ₉₅ ~3.4	q ₉₅ ~3	ITER 15 MA Q =10/20	ITER 16/17 MA Q =20/50
$\mathbf{H}_{\mathbf{H}}$	1.0-0.8	1.0	0.98	1.0	1.0	1.0
β _N	1.8	1.78	2.17	1.8	1.7/1.75	1.7/1.8
n_e/n_G	1.2-1.0	0.9	0.92	0.95	0.85/0.95	0.8/0.85
\mathbf{Z}_{eff}	1.7	1.8	1.4	1.7	1.7/1.6	1.6/1.6
δ _x	0.39	0.23	0.34	0.43	0.5	0.5
\mathbf{q}_{95}	2.8	2.8	3.4	3.1	3	2.85/2.69

Q = 10-20/400MW, Q = 50/500MW, Ar seeded: ~0.1%, Divertor heat load < 10 MW/m² $\mathbf{\hat{A}} \mathbf{H}_{\mathrm{H}} = 1 \mathbf{\hat{A}}$

Blanket Test :>1000s, 500 MW Å Test areaÅ 0.77 MW/m² Å

Long Pulse Operation

	Hybrid #7	Hybrid #2
I _P (MA)	13.3	14.4
q ₉₅	3.5	3.2
$< n_e > (10^{20} m^{-3})$	0.90	1.0
n _e / n _G	0.85	0.85
β_{N}	1.9	2.2
P _{FUS} (MW)	350	500
P _{NB} , P _{RF} (MW)	73	60
$\mathbf{Q} = \mathbf{P}_{\mathrm{FUS}} / (\mathbf{P}_{\mathrm{NB}} + \mathbf{P}_{\mathrm{RF}})$	4.8	5.0
$\tau_{\rm E}$ (s)	2.62	2.40
f _{He, axis / ave} (%)	2.9 / 2.2	3.9 / 2.7
Z _{eff, ave}	1.73	2.03
P _{Separatrix} (MW)	100	129
I_{CD}/I_{P} (%)	28	32
I_{BS} / I_P (%)	18	20
Burn time (s)	1280	1220
Shot # for 0.2 MWa/m ²	12800	9400

* Neutron fluence at test area = 0.28 MWa/m²

* Neutron flux at test area = 0.55 MW/m² at 350 MW, 0.78 MW/m² at 500 MW R (m) / a (m) = 6.2 / 2.0, κ_{95} / δ_{95} = 1.7 / 0.33, τ_{He}^{*}/τ_{E} = 5, HH(y,2) = 1.0 ** High triangularity gives q_{95} = 3.7 instead of 3.5.

* $n_{f\alpha} \sim n_D n_T < \sigma v >_{DT} \times \tau_{s,f\alpha}$ ($n_{f\alpha}/n_e$ has a weak dependence on n_e)

Fast Alpha Particle Parameter in ITER (17MA)

High fast alpha particle pressure can be accessed only with better confinement

Onset of the first sawtooth crash

(a) 20 MW of RF heating power is added at t = 77s(b) 20 MW of RF power is added at t = 34s to reduce current penetration.

QÅ 5.4, $I_P = 9.5$ MA Steady State Operation

 $\begin{array}{c} P_{FUS} \,/\, P_{CD} = 340 \ MW \,/\, 63 \ MW, \\ Z_{eff} \sim 1.9 \ (\ He \,/\, Be \,/\, Ar = 4\% \,/\, 2\% \,/\, 0.16\% \) \ , P_{sep.} = 100 \ MW, \ H_{H} = 1.45, \ \beta_{N} = 2.7 \\ r = 0\text{-}0.5 \ (NB:28 \ MW \), \ r = 0.5\text{-}0.8 \ (EC \ and \ LH : 35MW \) \end{array}$

Non-inductive Operation with Internal Transport Barrier from a Conventional Operation

Fast Formation of Steady State Plasma

Evolution of plasma parameters for the WNS steady-state operational scenario. X-point formation corresponds to t=15.7 s, start of flattop corresponds to t = 40 s, start of burn corresponds to t = 40 s.

Time response of fusion power to increase of fuelling rate (S_{FUEL}) for various τ_{DT}^*/τ_E values. Here, H_{H98(y,2)} = 1.0, P_{NB} = 33 MW, P_{RF} = 7 MW and τ_{He}^*/τ_E = 5.

Evolution of plasma parameters as a reaction on the 25% testing decrease in the plasma gas-puff fuelling (G_{n0}) for the WNS steady-state scenario.

Bootstrap Current Fraction in ITER (PRETOR simulation)

 $/a = 6.35m/1.85m, P_{NB} / P_{RF} = 17 \text{ MW} / 40 \text{ MW}$ $n_e > /n_G = 1.5, H_{H98(y,2)} = 1.6, f_{Be} = 2\%, f_{Ar} = 0.12\%$

By A. Polevoi (Kuteav/Parks/Strauss, ablation/cloud size/mass relocation)

Pellet Fuelling

Assumption: Teb = 1 KeV, n_e = 10²⁰m⁻³, 10 mm pellet Low field side: 0.2 a at 1 km/s High field side: (0.2a) at 0.3 km/s (Simple extraporation from ASDEX-U) Model will have to be developed for high field side injection

100 Pam³/s, 1 cm³/s, 0.27 g/s or 5.5 x 10^{22} /s of tritium extraction has been achieved (n_{DT} VP = 6.3 X 10^{22} IN ITER-FEAT). A total of 36 g T₂ and 28 g D-T runs.

Photograph sets for 10-mm pellets shot through 80-cm-radius curved guide tube. (Upper 285 m/s, Lower 315 m/s)

PreliminaryAnalysis with High Field Side Pellet Injection

	ITER E
	Mode1 1/2
Major radius (m)	6.35
Minor radius (m)	1.85
Elongation (95% flux)	1.85
Plasma current (MA)	12.5
Toroidal field on axis (T)	5.18
Safety factor, q95	3.77
Normalised beta βN,max/li3	3.56
Bootstrap fraction fbs	0.46
Confinement coefficient, HH	1.25
Plasma density, <n> (10²⁰m⁻³)</n>	0.92
n _{line} /n _{GW}	0.77
n _o /n _{ped} max	1.65
Av. Electron temperature (keV) <nt>/<n></n></nt>	16.4
Aux. Heating power (MW) (NBI)	100
Fusion power (MW)	780
Q	7.85

ITER: High field side pellet injection: 2Hz, 2r=h=0.7 cm, vp = 0.5 km/s. $\chi i = \chi e = D$ with parabolic profile

*Average Fluence at First Wall (Neutron wall load is 0.56 MW/m2 in average and 0.77MW/m2 at outboard midplane.)

Net consumption of tritium

The first ten years

Average 0.3/Blanket test area 0.4 MWa/m²

- Average 0.5/ Blanket test area 0.7 MWa/m²
- ~ 5kg
- ~15 kg (Minimum requirement)
- ~25 kg (Design value)
- ~30kg of tritium could be supplied with external sources

Phased Operations

<u>Hydrogen Phase</u>

Confirmation of the machine performance and increase of reliability of the operation Full commissioning of the ITER system in a non-nuclear environment Development of operation scenarios with semi-detached divertor and ~70 MW Better control/mitigation of disruptions/VDEs/ELMs/runaway electrons Characterization of dusts Build-up of experimental groups in the world wide fusion community

Deuterium Phase

Nuclear commissioning and confirmation of the basic plasma characteristics

No human access into the vessel

Deuterium Tritium Phase

Research of long burning plasmas Optimization of operations for various objectives Engineering tests including blanket tests for the next step

- 1. The maximum numbers of the ILE staff from the different Parties will be set in consideration to the contributions of the Parties. The complement of the directly employed ILE staff should be kept to a minimum necessitated in the project implementation.
- 2. The ILE staff arrangements should encourage mobility between the project and the Parties' domestic programmes.
- 3. To ensure wide scientific participation in the Project, the short-term (less than a year) participation of qualified personnel from universities and other institutions ("Guest Researcher") will be encouraged.
- 4. The operation of ITER will be conducted by the ILE staff only. The scientific exploitation of ITER will, beside the ILE staff, also involve the participation of researchers from fusion laboratories, universities or other research institutes of the Parties, which will be only part-time on site.

Physics Issues of Burning Plasmas in Inductive Mode

1. Thermal instability/Burn control - Normal operation: Stable Thermal instability could be triggered. - O 10: 2. Collective fast alpha particle effects - Normal operation : $\beta_{axis} = 1 \%$ - Higher beta (_2 %): $H_H > 1 P_{ad} > 100 MW, I_P > 15 MA$ 3. Thermal beta effects - Normal operation : β_N 2 $n > n_G, H_H > 1, P_{ad} > 100 MW$ - Higher beta : 4. Sawtooth effect - Normal operation : with sawtooth - No sawtooth : $q_0 > 1$, ~100 s

5. Pedestal/Edge Plasma/Divertor

Additional Issues of Burning Plasmas in Non-inductive Mode

6. Interaction among burn, I_b/I_{ad} , fuelling/pumping, impurity, transport, etc. How can appropriate plasmas (high Q, β_N and I_b/I_p) be obtained? Requirements are clear but predictions are not reliable. Stabilization : high β_N with low l_i High n, peaked n: deep fuelling High H_H : ITB, deep fuelling

Conclusions

The flexibility of ITER will allow research in a large operation space. (P_{fusion} , Q, n, β , pulse length, I_P -----) (Confirm predictable operation \Rightarrow Explore frontier)

★ Predictable operations and extended operations with inductive current drive 150 → 700MW, $n/n_G=0.5 \rightarrow 1$, $\beta_N=1.2 \rightarrow 2.4$, $Q=5 \rightarrow 10 \rightarrow 20 \rightarrow \infty$ ~ 100 s burn is necessary to study plasma behavior.

- * Hybrid operations
 - > 1000 s / 500 MW/Q=5 with reasonable parameters for blanket test (0.77 MW/m²) If necessary, q95 > 3.5 scenarios is available.

 Research of fully non-inductive driven operations aiming at Q=5 (higher β/higher confinement, methods included in ITER)

> ~ 2000 s is necessary to achieve steady state of AT mode from conventional one. By optimizing current ramp-up, steady state of AT can be achieved within 200 s.

The experimental concept will increase efficiency, involve the worldwide fusion community and promote scientific competition.

PRETOR Simulation for Various Heating Powers

Ip=17 MA, $\langle n_e \rangle = 1.15 \simeq 10^{20}/m^3$ ($\langle n_e \rangle / n_G = 0.85$), $\tau_{He} / \tau_E \sim 5$ and argon is seeded to limit the power to the divertor region to 30 MW

Simulation for feedback control of target plate temperature by impurity seeding in case of sudden increase of fusion power P_{FUS}.

Plasma parameter profiles at the current flat-top (t > 1000 s) for the steady-state WNS operational scenario. $H_{\rm H} = 1.57, Q = 6, \ \beta N = 2.95, P_{\rm NB} + P_{\rm LH} = 30 + 30 \ MW, R/a = 6.35 / 1.85$