Technology of Heating and Current Drive in ITER

Y.Shimomura ITER Joint Central Team

Burning Plasma Science Workshop Burning Plasma Science Experiment Concepts and Technologies May 1-3, 2001 General Atomics, San Diego, USA

Heating and Current Drive System

EC 170 GHz, 20 MW (+ 20 MW) Horizontal port: 20 MW / port Heating and Current drive Toroidally steerable mirror Upper port: 7 MW/port x 3 Localized current drive to stabilize NTM Poloidally steerable mirror

- **ICRF** 40 56 MHz, 20 MW (+20 MW)
- **LH** 5GHz, 0 MW (+40 MW)

NB1 MeV33 MW / 2 ports (+17 MW) $R_{tan} = 5.3 \text{ m},$ Zaxis = (-42) - (+15) cm(Plasma axis -32 cm)

Front and Back of RF Assembly Common Support Structure, Including Port Flange and Closure Plate (1.8 x 2.2 m)

Table 2.5.4.1-1Ion Cyclotron resonances

Resonance	(MHz)	Comments
$2\Omega_{\rm T}=\Omega_{\rm 3He}$	53	Second harmonic + minority heating.
Ω _D	40	Minority heating. Strong competition of Be and α -particles
FWCD	56	On axis current drive
$\Omega_{3_{\mathrm{He}}}$	45	Minority ion current drive at sawtooth inversion radius (outboard)

Table 2.5.4.2-1 Summary of Array Parameters (at R' = 4 Ω /m and f = 55 MHz)

Parameter	Value	Parameter	Value
Strap length (m)	0.3	MTL Voltage (kV)	12.25
Characteristic impedance (Ω)	~35.0	Max voltage in tuner (kV)	32.1& 40.0
Input power (MW)	2.5	Max E-field in strap (V/mm)	1.3
Input voltage (kV)	5.5	Power transfer efficiency (%)	~95
Max. strap voltage (kV)	27	Max. strap current (kA)	1.30

Figure 2.5.4-2 View

ICRF

All metal Vacuum Transmission Line Support

- Avoid dielectric material
- Cool through the inductive shunt

Prototype of Vacuum Transmission Line with All Metal Supports

Parameter Value Number of active wave-guides 24 Number of passive wave-guides 25 Cross section of active wave-guide (mm^2) 9.25 x 171 Mechanical length (mm) 900 Fundamental transmission mode TE_{30} Mechanical length (mm) 925 to 1050 Phasing among active wave-guides $3\pi/2$ Typical n// value 1.9-2.1 Max electric field in nominal power (22%) 3.2 plasma reflection (kV/cm)

Figure 2.5.5-1LH Launcher

Table 2.5.5.2-1MechanicalDimensions of Multi-junction Stack

Electron Cyclotron System

Equatorial port : standardized port plug for IC/EC/LH

ECRH/ECCD for ITER:

ITER-task: Remote steering antenna for ECRH/ECCD

Far-field measurements, distance ca. 1700 mm Scan angles 0°, 5°, 10°

F = 142,42 GHz; (141,52 GHz with Mitrebends) Length = 6720 mm; (6700 mm mit Miterbends) •Collaboration with IAP Nizhny Novgorod and CRPP Lausanne

ITER Gyrotron Development

170 GHz long pulse gyroton

Achieved in 1999: 170 GHz, 0.5 MW- 8s, Now commercially available with maintenance free SC magnet system Six same type gyrotrons (168 GHz) in LHD from 2000 (Achieved in April 2001: 140 GHz, 0.8 MW-45 s, 0.45 MW-180 s)

165GHz Coaxial Cavity Gyrotron (left) and Frequency Tuning (right)

- Frequency Step Tuning -

Operating Parameters : $I_b \cong 50 \text{ A}$; U_c, B_{cav} and R_b adjusted individually. U_c, B_{cav} and R_b optimized for maximum rf-output power at TE_{31,17}, TE_{32,17}, TE_{30,16}, TE_{28,15}, TE_{27,14}.

Achieved : 1.2 MW, 0.015, 50 % efficiency, frequency tuning, 2.2 MW/1ms Target : 1.5 MW, 0.15 s at 165 GHz

Current Drive Efficiency of Neutral Beam

N-NB : 360keV η_{CD-NB}=1.55x10¹⁹A/m²/W

NB System Layout. Plan View

Figure 2.5.1-3Neutral Beam Injector, Isometric View

Ion Source Development

20 mA / cm²1000 s (H-, H-/D-)8 mA / cm²One weekThe target current density is obtained and long life of Cs effect is demonstrated.

Neutralizer

60 % is achieved with gas which gives 16.7 MW /beam Plasma neutralizer may increase to 20 MW/beam

JT-60U Ion Source 1.2m x 0.64 m, 5.2 MW/350 kV/15 A(D⁰)/2s (ITER 1.17 m x 0.9 m, 16 MW/1MeV/16 A(D⁰)/3600 s) The large current of negative ion beam is demonstrated.

High voltage bushing

One ring is fabricated and will be tested (5 rings in ITER)

90% size, 900 kV/1000 s is achieved

I:

П:

A 1 MV Ceramic SINGAP Bushing - Prototype for ITER NBI. Left: original epoxy bushing with present 9 stage, Right: section of prototype insulator/screen assembly.

Test facility for the mockup bushing, located between two ${\rm SF}_6$ tanks

High energy beam 0.9 MeV/180mAH⁻, 1 MeV/25 m AH⁻, 0.4 MeV / 14 AD⁻ 3-5 m rad is achieved at ~0.7MeV

Non-Inductive Current Drive

Conclusion

R&D is confirming applicability of each system to ITER.

(R&D of Heating and Current Drive System will be continued.)

Current Drive Efficiency of Lower Hybrid wave

Equatorial EC Launcher

Figure 2.5.1-1Tokamak and H&CD Neutral Beam Geometry