

H-mode Threshold and Confinement Issues for a Next Step Burning Plasma Experiment

presented by

J. A. Snipes

MIT Plasma Science and Fusion Center Cambridge, MA USA

Global H-mode Threshold Analysis

The global regressions to the H-mode threshold power based on data from 10 different tokamaks are:

$$P_{I} = 2.84 \text{ M}^{-1} \overline{n}_{e}^{0.58} B_{T}^{0.82} R^{1.00} a^{0.81} \text{ RMSE} = 26.8\%$$

or

$$P_{\rm L} = 0.108 \text{ M}^{-1} \overline{n}_{\rm e}^{0.49} B_{\rm T}^{0.85} \text{ S}^{0.84}$$
 RMSE = 27.8%

where $P_L = P_{in} - dW/dt$ is the input power minus the change in the plasma stored energy in MW, M is the atomic mass of hydrogen isotopes, π_e is the line averaged density in units of 10^{20} m⁻³, B_T is the toroidal field on axis in T, R and a are the major and minor radii in m, and S is the plasma surface area in m². These regressions gave equal weight to each point. The inverse isotope dependence of the threshold was found by comparing H, D, and T discharges in JET.

- Log-linear regression fit to L-H threshold data from all 10 tokamaks satisfying low threshold criteria (SELDB2) with line averaged density, toroidal field, and surface area in units of 10²⁰ m⁻³, T, m²
- Equal weighting between points was used since equal weighting between tokamaks had somewhat higher RMSE
- Only D plasmas used though JET data show a 1/M dependence for hydrogen isotopes (H, D, T)

Hysteresis in the H-mode Threshold with Ramping P_{ICRF} on Alcator C-Mod

- Enters H-mode at $P_L/P_{th} = 1$ but remains in H-mode down to $P_L/P_{th} = 0.5$ as the density increases and P_{ICRF} decreases
- Particle confinement remains high down to $P_L/P_{th} = 0.5$ as the energy confinement returns to L-mode
- Such hysteresis is not observed on JFT-2M or JT-60U

	FIRE	IGNITOR	ITER-FEAT
R (m)	2.0	1.32	6.2
a (m)	0.525	0.47	2.0
$\overline{n}_{e} (10^{20} \text{ m}^{-3})$	5.2 (6.2)	6.2	1.0
$\mathbf{B}_{\mathrm{T}}\left(\mathrm{T}\right)$	10 (12)	13	5.3
S (m ²)	60	34	678
q 95	3	3.6	3.7
δ	0.4	0.43	0.33
$n_{e90} (0.8 \ \overline{n}_{e})$	4.2 (5)	5.0	0.8
P _{aux} (MW)	30	24	73
P _{th} (nBRa)(MW) 23 (30)	19	49
P _{th} (nBS)(MW)	21 (27)	18	43
T _{e90th} (eV)	995 (1161)	800	1570

• Confinement often exceeds ITER98(y,2) scaling in H-mode

Conclusions

- Latest H-mode threshold scalings based on 10 tokamaks reduce the required threshold power compared to ITER FDR scalings
- Although there are × 2 uncertainties in the H-mode threshold, the present scalings indicate that FIRE, IGNITOR, and ITER-FEAT should be able to reach the H-mode at full parameters in DT
- A factor of ~ 2 hysteresis in the H-mode threshold allows the plasma to remain in H-mode with increasing density and/or toroidal field
- Energy confinement in C-Mod fits well the ITER89P scaling in L-mode and 2 × ITER89P in H-mode and often exceeds the ITER98(y,2) scaling
- Substantial plasma rotation in both Ohmic and ICRF heated plasmas increases with stored energy may help to stabilize resistive wall modes
- Z_{eff} generally decreases with increasing density
- Controlled density profile peaking in H-mode has been achieved with 2 frequency ICRF under some conditions