THE OPTIMAL TOKAMAK CONFIGURATION NEXT-STEP IMPLICATIONS

by R.D. STAMBAUGH

Presented at the Burning Plasma Workshop San Diego, California

*Most calculations reported herein were done by Y-R. Lin-Liu. †Work supported by General Atomics Internal Funds.

May 1, 2001

086–01/RDS/wj

ANY NEXT STEP DEVICE SHOULD BE FORWARD LOOKING AND CARRY FORWARD THE CURRENT RESEARCH ISSUES OF THE DAY

- Any Next Step Device Will Have a 20–30 Year Research Period
- For its research program to remain vital over that length of time, we must design the device so that it can carry forward the most up-to-the minute research issues of today
- Current research issues need a future to expand into
- If we design the device based on the physics we are currently sure of, then, considering current research progress, we have to look carefully at whether the device once built will be able to address the issues of that future day

WHAT ARE THE CURRENT PHYSICS RESEARCH LINES THAT NEED **TO BE CARRIED FORWARD?**

Current Research Line	Machine Design Feature Implied
Improved Confinement Through Transport Barriers	Maximization of the E×B Turbulence Shearing Rate
Understanding Transport	Suitable Diagnostics and Operational Flexibility
Steady-state Through High Bootstrap Fractions	1. Ability to Handle and Maintain Equilibria with Hollow Current Profiles
	2. Wall Stabilization for Higher Normalized Beta Operation
Operation Above the Free Boundary Beta Limit	Wall Stabilization Through Feedback and Plasma Rotation
Resolution of the Disruption Issue	1. Long Pulse, Precise Plasma Control Near Understood Stability Limits
	2. Ability to Handle Disruptions
	3. Mitigation of Disruptions by Massive Gas Puffs or Liquid Jets
Profile Control for higher beta and advanced confinement	1. Auxiliary Systems to Provide Local Control of Pressure, Current, and Rotation Profiles
	2. Diagnostic Systems To Measure the Resulting Profiles
Detached Divertor Solutions	Divertors Capable of Detached Operation at Densities Compatible With Steady-State
ELM-free Operational States	Ability to realize the EDA and/or QH–mode regimes
Erosion and Redeposition of First Wall Materials	High Particle Fluences to Surfaces and In-vessel Access For Inspection

086-01/RDS/ci

WE ARE READY TO TAKE UP BURNING PLASMA AND STEADY-STATE ISSUES

MF E-Tokamak

WHAT IS THE OPTIMUM TOKAMAK?

• Lin-Liu constructed equilibria with

- Bootstrap fraction 99%, fully aligned
- Found ballooning limit
 - ★ A point near edge
- p' = 0 at separatrix
- Wall stabilization assumed for kinks

• Spanned $1.5 \le \kappa \le 6$ $1.2 \le A \le 7$

$$\beta_{T} \beta_{p} = 25 \left(\frac{1-\kappa^{2}}{2}\right) \left(\frac{\beta_{N}}{100}\right)^{2}$$

$$\int_{B} f_{bs} = c_{bs}\beta_{p}/\sqrt{A}$$

$$P_{F} \propto \beta_{T}^{2}B_{T}^{4}$$

THE LIMITING EQUILIBRIA HIT THE BALLOONING LIMIT AT A POINT NEAR THE EDGE

× PLOTMED	0 (8/08/00) ж
date ron	-	17-Apr-	·01?
g816405.0	10	00.RDS1	.6k4.0
65×129	ve	rsion 9	80709
shot, time	-	0	0
a,o95(m)	-	1.00	.97
r,r95(m)	-	1.60	1.62
<i>z,z</i> 95(m)	-	.00	.00
E,E95	-	4.00	4.05
ut,ut95	-	.49	1.00
lt,lt95	-	.49	.50
v,v95(m3)	-	112.60	109.39
A, A95(m2)	-	12.13	11.61
q,q95	-	9.27	8.59
q(0)	-	3.52	
Jln	-	.00	
betat,w,%	-	73.35	.00
betop,Pf	-	1.61	1.41
li	-	.24	
bn,In	-	7.95	9.2213
Ip(MA)	-	18.43	
Ipc(MA)	-	18.43	
Bt,R(T,m)	-	2.00	1.60
sib,sim	-	.000	.729
delstr	-	7 . 542E	:+00

* PLOTMED 08/08/00 *
date ran = 17-Apr-01?
g816405.01000.RDS1.6k4.0

* PLOTMED 08/08/00 * date ran = 17-Apr-01? g816605.01000_RDS1.6 65x129 version 980709 shot,time= 0 0 1.00 $a_{,0}95(m) =$.97 r,r95(m) =1.60 1.62 $z_{,z}95(m) =$.00 .00 E,E95 6.01 6.08 ut, ut 95 -.50 1.00 .50 lt, lt 95 -.50 v_{y} (m3) = 168.65 163.86 A,A95(m2) =18.15 17.37 13.36 11.98 q,q95 (0)p 4.84 J1n .00 betot,w,%= 80.86 .00 1.57 1.41 betop,Pf = ιi .23 5.68 14.2320 bn, In -Ip(MA) 28.36 -Ipc(MA) 28.37 Bt,R(T,m) =2.00 1.60 .003 .776 sib,sim delstr 6.788E+00

* PLOTMED 08/08/00 *
date ran = 17-Apr-01?
g816605.01000_RDS1.6

"ULTIMATE" AT PRESSURE PROFILES WILL REQUIRE AN ITB AT LARGE RADIUS, CONSISTENT WITH MHD STABILITY AND HIGH BOOTSTRAP FRACTION

- Modeling indicates that increasing ITB radius and barrier width is consistent with:
- Higher fusion performance (larger high confinement volume)

SAN DIEGO

 Improved MHD stability limits High bootstrap fraction and improved bootstrap current alignment

HIGH BOOTSTRAP FRACTION ARIES-AT SCENARIO DEMONSTRATES NEED FOR TRANSPORT CONTROL AT LARGE BOOTSTRAP FRACTION

32500/TST/wj

THE FUTURE

 Advanced Tokamak stability theory points to states with very broad pressure profiles and hollow current profiles and nearly 100% bootstrap current as perhaps the ultimate potential of the Tokamak

(J. Menard, S. Jardin, J. Manickam)

A=1.6

BetaN_vs_A

BetaN

OPTIMIZING Q IN A STEADY-STATE MACHINE

$$Q = \frac{P_F}{P_{CD}} = \frac{\gamma_{CD}P_F}{nIR(1 - f_{bs})} = \frac{\gamma_{CD}\beta_N^2 \kappa B_c^2 \left(1 - \frac{1}{A}\right)^2 Ra^2}{f_{GR}R(1 - f_{bs})}$$

n = f_{GR} $\frac{I}{\pi a^2}$

• B_c = field at centerpost (fixed maximum from stress)

•
$$f_{bs} = c_{bs} \beta_p / \sqrt{A} = \frac{c_{bs}}{20} \sqrt{A} q_{cyl} \beta_N$$

• Express
$$\beta_N(A)$$
 as $\beta_{NO}A^{-\alpha}$ and κ as $\kappa_OA^{-\phi}$

• Optimize the function
for
$$\alpha = 1/2$$
; $\phi = 1/2$
 $\alpha = 1$; $\phi = 1/2$
 $\alpha = 1/2$; $\phi = 1/2$
 $\alpha = 1/2$
 $\alpha = 1/2$
 $\alpha = 1/2$
 $\alpha = 1/2$
 $A^{-2\alpha} \left(1 - \frac{1}{A}\right)^2 A^{-\phi}$
 $\left(1 - \frac{c_{bs}}{20} q_{cyl} \beta_{N0} A^{1/2-\alpha}\right)$
Amax = 2.3
Amax = 1.5

1) Passive stability results from A. Sykes, "Progress on Spherical Tokamaks," Plasma Phys. and Contr. Fusion **36**, B93 (1994).

2) Feedback stability results for peaked profiles from R. D. Stambaugh, et. al., "Relation of Vertical Stability and Aspect Ratio in Tokamaks," Nucl. Fusion **32**, 1642 (1992).

3) Feedback stability results for broad profiles from recent work by L. Lao.

OPTIMIZING Q IN A STEADY-STATE SYSTEMS (Continued)

- Fit Lin-Liu's data to $\beta_N = \beta_{N0} A^{-(a+b\kappa)} (c + d\kappa + e\kappa^2)$
- Use this β_N in ratio for Q

OPTIMUM ASPECT RATIO ST IS 1.5

• Optimize
$$\frac{P_{FUSION}}{P_{CENTERPOST}}$$
 as

- Stambaugh et al., Fusion Technology <u>33</u>, 1 (1998)

•
$$\frac{P_F}{P_C}$$
 at constant bootstrap fraction is
 $\propto (1 + \kappa^2) \beta_N^4 \left(\frac{A-1}{A}\right)^2$

• Use
$$\kappa \propto$$
 A^{-1/2} and $\beta_{N} \propto$ A^{-1/2}

• Optimum of
$$\left(\frac{A-1}{A^6}\right)^2$$
 is A = 1.5

SC AND NC TEST REACTORS

(T-peak at 20 keV, f_{bs} = 90%, and S_n =0.25, S_t = 0.25)

18th IAEA Fusion Energy Conference, Sorrento, Italy 2000

SC AND NC POWER REACTORS

(T-peak at 20keV, fbs=90%, and Sn=0.25, St=0.25)

18th IAEA Fusion Energy Conference, Sorrento, Italy 2000

093-01/RDS/df

			Α	В	С	D	E
	FDF Base Case and		Net Electric!	OK Blanket	OK Blanket	OK Blanket	OK Blanket
	No Wall Stabilization Cases		10 cm	No Wall Stab	ilization		
			Inboard	BetaN down	fbs 0.5	fbs 0.7	Turn up B
Α	aspect ratio		1.6	1.6	1.6	1.6	1.6
а	plasma minor radius	m	0.70	0.70	0.70	0.70	0.70
Ro	plasma major radius	m	1.12	1.12	1.12	1.12	1.12
κ	plasma elongation		3.00	3.00	3.00	3.00	3.00
Rhole	Hole Size	m	0	0	0	0	0
Jc	centerpost current density	MA/m2	50	50	45	50	60
framp	induct ramp frac		0.000	0.000	0.000	0.000	0.000
Pf	fusion power	MW	516.69	99.63	211.78	164.69	206.58
Pc	power dissipated	MW	84.45	84.45	68.40	84.45	121.60
Pinternal	power to run plant	MW	211.99	174.35	256.84	215.77	250.47
Qplant	gain for whole plant		1.12	0.26	0.38	0.35	0.38
Qplasma	Pfusion/Paux		25.83	4.98	4.51	8.23	10.33
Pnetelec	net electric power	MW	25.69	-128.53	-159.42	-140.02	-155.44
Pn/Awall	Neutron Power at Blanket	MW/m2	7.77	1.50	3.18	2.48	3.11
BetaT	toroidal beta		0.54	0.24	0.43	0.31	0.24
BetaN	normalized beta	mT/MA	8.30	5.50	5.50	5.50	5.50
fbs	bootstrap fraction		0.90	0.90	0.50	0.70	0.90
Pcd	current drive power	MW	13.65	3.97	46.92	19.70	6.86
lp	plasma current	MA	13.19	8.74	14.16	11.24	10.49
Во	field on axis	Т	2.87	2.87	2.59	2.87	3.45
Bc	field at conductor	Т	10.05	10.05	9.05	10.05	12.06
Ti(0)	Ion Temperature	keV	20.00	20.00	20.00	20.00	20.00
Te(0)	Electron Temperature	keV	20.00	20.00	20.00	20.00	20.00
n(0)	Electron Density	E20/m3	4.62	2.03	2.96	2.61	2.92
nbar/nGR	Ratio to Greenwald Limit		0.43	0.29	0.26	0.29	0.34
Zeff			2.40	2.40	2.40	2.40	2.40
W	Stored Energy in Plasma	MJ	82.22	36.10	52.64	46.42	51.99
Pheat	Total Heating Power	MW	123.34	39.93	89.27	52.94	61.32
TauE	TauE	sec	0.67	0.90	0.59	0.88	0.85
Н	H factor over 89P L-mode		4.81	5.47	3.47	4.89	5.18

			Α	Н		J
	ST FDF Base Case and		Net Electric!	Q=4, Blanket	OK Blanket	Driven VNS
	Low BetaN Cases		10 cm	Cases at BetaN	4.15	
			Inboard	BetaN lower	fbs 0.7	Get to H=2
Α	aspect ratio		1.6	1.6	1.6	1.6
а	plasma minor radius	m	0.70	0.70	0.70	0.70
Ro	plasma major radius	m	1.12	1.12	1.12	1.12
κ	plasma elongation		3.00	3.00	3.00	3.00
Rhole	Hole Size	m	0	0	0	0
Jc	centerpost current density	MA/m2	50	63	60	30
framp	induct ramp frac		0.000	0.000	0.000	0.000
Pf	fusion power	MW	516.69	81.39	110.70	84.75
Pc	power dissipated	MW	84.45	134.07	121.60	30.40
Pinternal	power to run plant	MW	211.99	259.64	266.78	216.30
Qplant	gain for whole plant		1.12	0.14	0.19	0.18
Qplasma	Pfusion/Paux		25.83	4.07	5.53	1.42
Pnetelec	net electric power	MW	25.69	-222.20	-215.86	-177.31
Pn/Awall	Neutron Power at Blanket	MW/m2	7.77	1.22	1.66	1.27
BetaT	toroidal beta		0.54	0.14	0.18	0.61
BetaN	normalized beta	mT/MA	8.30	4.15	4.15	4.15
fbs	bootstrap fraction		0.90	0.90	0.70	0.20
Pcd	current drive power	MW	13.65	3.41	14.63	59.72
lp	plasma current	MA	13.19	8.31	10.18	17.81
Во	field on axis	Т	2.87	3.62	3.45	1.72
Bc	field at conductor	Т	10.05	12.67	12.06	6.03
Ti(0)	Ion Temperature	keV	20.00	20.00	20.00	20.00
Te(0)	Electron Temperature	keV	20.00	20.00	20.00	20.00
n(0)	Electron Density	E20/m3	4.62	1.83	2.14	1.87
nbar/nGR	Ratio to Greenwald Limit		0.43	0.27	0.26	0.13
Zeff			2.40	2.40	2.40	2.40
W	Stored Energy in Plasma	MJ	82.22	32.63	38.05	33.30
Pheat	Total Heating Power	MW	123.34	36.28	42.14	76.67
TauE	TauE	sec	0.67	0.90	0.90	0.43
Н	H factor over 89P L-mode		4.81	5.19	4.75	2.15
VH	Tau over 0.85 ELM Free		3.82	3.89	3.47	1.72

			Α	F	G
	ST FDF Base Case and		Net Electric!	~OK Blanket	Really High
	Low BT Cases		10 cm		Beta
			Inboard	Low BT	fbs=0.5
Α	aspect ratio		1.6	1.6	1.6
а	plasma minor radius	m	0.70	0.70	0.70
Ro	plasma major radius	m	1.12	1.12	1.12
κ	plasma elongation		3.00	3.00	3.00
Rhole	Hole Size	m	0	0	0
Jc	centerpost current density	MA/m2	50	30	30
framp	induct ramp frac		0.000	0.000	0.000
Pf	fusion power	MW	516.69	66.96	216.96
Pc	power dissipated	MW	84.45	30.40	30.40
Pinternal	power to run plant	MW	211.99	73.80	190.69
Qplant	gain for whole plant		1.12	0.42	0.52
Qplasma	Pfusion/Paux		25.83	3.35	4.54
Pnetelec	net electric power	MW	25.69	-43.00	-90.89
Pn/Awall	Neutron Power at Blanket	MW/m2	7.77	1.01	3.26
BetaT	toroidal beta		0.54	0.54	0.98
BetaN	normalized beta	mT/MA	8.30	8.30	8.30
fbs	bootstrap fraction		0.90	0.90	0.50
Pcd	current drive power	MW	13.65	2.95	47.78
lp	plasma current	MA	13.19	7.92	14.25
Bo	field on axis	Т	2.87	1.72	1.72
Bc	field at conductor	Т	10.05	6.03	6.03
Ti(0)	Ion Temperature	keV	20.00	20.00	20.00
Te(0)	Electron Temperature	keV	20.00	20.00	20.00
n(0)	Electron Density	E20/m3	4.62	1.66	2.99
nbar/nGR	Ratio to Greenwald Limit		0.43	0.26	0.26
Zeff			2.40	2.40	2.40
W	Stored Energy in Plasma	MJ	82.22	29.60	53.28
Pheat	Total Heating Power	MW	123.34	33.39	91.17
TauE	TauE	sec	0.67	0.89	0.58
Н	H factor over 89P L-mode		4.81	5.96	3.75
VH	Tau over 0.85 ELM Free		3.82	4.90	3.09

FUSION DEVELOPMENT FACILITY

• Steady progress through sequenced objectives

	1 2	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
PHASES	D-	-D PHY	SICS			DT F	PHYS	ICS	DE	BLAN VELC	IKET DPME	NT					TRIT SUF	IUM S	SELF NCY
FUSION POWER (M	W)			~0	10-			→ 3(00						4(00			500
ELECTRIC POWER	(MW)			-200)		-250					1	-250				-5	50	
DUTY CYCLE				0.4%)	0.4	4%			0.	4% -				► 10)%	10)%	
	60 SE	COND	PU	LSES	S (60 SI	EC -	- 5	MIN		~ W	EEK	LON	NG R	UNS	6	STE	ADY	'-STATE
NEUTRON WALL LC	DAD (M	W/m ²)						Ę	5						6	6		8	3
TRITIUM PER YEAR	2																		
BURNED (kg))			~0				0	.1						2	.7		2	7
PRODUCED	[NET] ((kg)		0				()						3.1	[0.4]		31	[4]

