Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory

Burning Plasma Workshop

May 1 - 3, 2001 General Atomics San Diego, CA

Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE

- The diagnostic set should provide the same quality of data as in best present-day devices.
- High quality, reliable information on many plasma parameters will be used to provide control signals.
- New information about the alpha-particles.
- The neutron radiation environment must be considered in design of the diagnostic system.

Outline of Talk

- Specifications of the measurement goals,
- Aspects to be considered in design:
 - Port configurations,
 - Radiation effects,
 - Specific issues for different diagnostic techniques.

• Alpha-particle measurement.

Examples of Target Plasma Measurement Capability proposed for ITER-FEAT

	PARAMETER RANGE	SPATIAL	TIME	
PARAMETER		RESOLUTION	RESOLUTION	ACCURACY
Plasma current	0.1 – 17.5 MA	Not applicable	1 ms	1% (I _p >1 MA)
Total neutron flux	1x10 ¹⁴ - 1x10 ²¹ n s ⁻¹	Integral	1 ms	10%
Neutron & α-particle source	1x10 ¹⁴ -4x10 ¹⁸ ns ⁻¹ m ⁻³	a/10	1 ms	10%
Divertor surface temperature	200 - 2500°C	-	2 ms	10%
Core electron temp-erature profile	0.5 - 30 keV	a/30	10 ms	10%
Edge electron density profile	$(0.05 - 3) \ge 10^{20} \text{ m}^{-3}$	0.5 cm	10 ms	5%
Radiation profile in main plasma	0.01 - 1 MWm ⁻³	a/15	10 ms	20%
Radiation profile in divertor	≤100 MWm ⁻³	5 cm	10 ms	30%

Simplified List of Measurements for Input to Control Systems

- Fast Plasma Shape and Position Control:
 - Magnetic diagnostics, IR camera
- Kinetic Profile Control:
 - Thomson scattering, Interferometer/Polarimeter, Reflectometer, ECE, CXRS (T_i and He-ash), Neutron Detectors,
- Current Profile, Rotation Control:
 - Magnetic diagnostics, MSE, CXRS
- Optimized divertor operation:
 - Interferometry, IR camera, Spectroscopy
- Fueling control:
 - **D,T monitoring (edge good enough?)**
- Disruption prevention (First-wall/ Divertor Protection):
 - Magnetic diagnostics (β ; MHD), kinetic profile set

FIRE Port Configuration

- Large radial ports with extended necks,
- Very small vertical ports,
- X-point aligned ports to be shared with in-vessel services, and "blocked sightlines", but could be used for divertor sightlines.

FIRE vacuum vessel concept

Use of Access Ports

- Extremely good radial access (with shielding),
- Very limited access top and bottom,
- Use top and bottom outer ports for viewing divertors, bolometers, light arrays,
- Use tangential arrangements for interferometry, TS, etc.

CONCEPT FOR INTERFEROMETER/POLARIMETER FOR ITER

The Impact of the Neutron (Gamma) Environment

- Special design and materials to be used for in-vessel systems
 - Also prevents the use of many present-day diagnostic components.
- Requirement for thick shielding, penetrated by complex labyrinths
- Constraint on the use of optical components, especially lenses and fiberoptics.

How does Radiation Impact Use of Ports for ITER?

ITER port for LIDAR Thomson scattering

ITER Physics Basis, Chapter 7

K.M. Young 1/17/01

Tangential arrangement proposed for interferometer/polarimeter in ITER

Radiation Effects (Ceramics (1), Optical components (2), Mirrors (3))

	First Wall (Gy/s)	Interspace Structure/ Shielding	Outside Vac. Vess. Port (Gy/s)	Fluence
ITER- FEAT (700 MW, 0.8 MW/m ²)	$\begin{array}{l} 4x10^{3} \\ + \text{ neutrals } \rightarrow \end{array}$	<> →	5	Issue at 1 st wall (long- term damage) Few x 0.1 dpa
FIRE (220 MW, 3.6 MW/m ²)	$\begin{array}{c} 2x10^4 \\ + \text{ neutrals } \longrightarrow \end{array}$	<> →	20	Non-issue
Components	Magnetics (1) <mi-cable (1)<br="">Lost-Alpha Retroreflectors (3) Thermocouples (1) Gauges (1)</mi-cable>	> Mirrors (3) >	Windows (2) Fiberoptics (2) Optical comp- onents ? (2) Vacuum-diag. Detectors? (1)	

Numbers are approximate and average

Radiation Effects on Diagnostic Components

- Diagnostic Component Worst Radiation Problem
- Ceramics (and Detectors) Electrical (RIC, RIED, RIEMF)
 - Studies of RIEMF in progress for MI-cable used in coils.
- Fiberoptics (and Windows) Absorption, Luminescence, Numerical aperture
 - Developments of new doped fibers in progress for reducing absorption,
 - Luminescence problem for low-light level signals.
- Mirrors

Mechanical + Neutrals in Surface Modification (near first wall)

Studies of surface damage impact and of surface preparations in progress.

Magnetic Diagnostics: Issues

- Loops, coils, MI-cable must be inside vacuum vessel,
- Maximally unfriendly environment; RIC and RIEMF, temperature, neutral particles,
- No in-built protection,
- Renew R&D program on radiation impact on ceramics/MI cable.

Radiation Effects on Optical Systems

- Radiation discolors/blackens optical components,
- Hence must use reflective optics in high-radiation areas.
- Optical fibers suffer from:
 - Prompt luminescence,
 - Prompt absorption,
 - Long term absorption damage,
 - Effective change in numerical aperture.
- Running fibers hot only affects the long-term absorption.
- Great disparity in radiation effects on nominally identical fibers.

Luminescence (and Absorption) Impact on Measurement in an α-diagnostic

Darrow, Zweben et al.

Lost- α diagnostic on TFTR with fiberoptic outside vacuum vessel. TFTR shot at 5MW (5x10⁻² MW/m² at first wall.

Dose at front end of fiber ~ 30 Gy/s

Issues for other Individual Systems

- Good spatial resolution diagnostics like x-ray diodes, bolometers, CCD cameras susceptible to failure in radiation background,
- Low-light level spectroscopic measurements susceptible to radiation noise, absorption (calibration!)
- Magnetic field, density range affect choice of microwave diagnostics,
- Auxiliary heating technique affects diagnostics.

Thomson Scattering: Issues

- Imaging system required for spatial resolution (cannot use LIDAR),
- Optical systems need shielding,
- Difficult sightline arrangement; will have to use tangential laser beam, view from nearby port, with close front-end mirror.

KSTAR Concept for TS

Good Profile Diagnostics currently Require a Neutral Beam

- $T_i(r), v_f(r), v_q(r), q(r), n_{HE-ash}(r), (E_r(r)),$
- Good poloidal rotation needs opposing views; not possible,
- Diagnostic beam near-radial; penetration at ~100keV/amu problematic,
- Diode beam, 5x10⁹W for <1ms for CXRS?
- MSE prefers > 300 keV/amu.

MSE q-profiles in the target phase of two JET Optimized Shear discharges. The q-profile for shot 49651 is typical for JET OS plasmas. Shot 49382 had LHCD and ICRF in the preheat as well as the beams and it shows a strongly reversed qprofile (Stratton, Hawkes, et al.)

Divertor Diagnostics

- Divertor diagnostics must relate to the physics goals of the device
 - Needs strong modeling interaction,
 - Important for impurity, fueling and ash measurements, tritium accountability,
 - Need validated control schemes.
- Detachment monitoring.
- Survivability of position and shape measurements.

Diagnostics for Alpha-Particle Physics

- Lost fast-ion detectors and IR camera,
- α -CHERS,
- Collective scattering (CO₂, ?),
- Li-pellet, fast neutral particle analyzer,
- Knock-on neutron,
- New confined-α detector???
- High-frequency Mirnov coils, reflectometry.

Fast-ion spectra from Collective Scattering in TEXTOR (Bindslev, Woskov et al.)

Alpha-Chers can Provide Absolute Measurement of some Confined Alphas

Charge Exchange between fast beam ions and slowing-down Alphas

No data taken in TFTR during neutron pulse. Improved optical design should provide time-resolved measurements of alpha distribution

0 ≤D_α≤ 0.03 m²/s

FIRE: Diagnostics Schedule

FIRE DIAGNOSTICS SCHEDULE: REVISION 0 1 SEPTEMBER 1999

K.M. Young 1/17/01

Development Concerns

- What are impacts of high-field, highly shaped, high-n_{e,} high radiation, RF-only on diagnostics selection and development?
 - Radiation "hardness" of diagnostic components?
 - Lifetime of plasma-facing mirrors, other optical elements?
 - Reliability of magnetic diagnostics?
 - ECE/reflectometry functionality?
 - Interferometry refraction/wavelength?
 - Use of bolometry, x-ray techniques?
 - CXRS and MSE techniques; capability for diagnostic neutral beam(s)?
 - Confined alpha-particles?

Physics Input Needed prior to detailed Diagnostic Design

- Will the new physics need the same high resolutions as now in U.S.?
- What input will be needed for control systems?
- What is needed for fluctuation (turbulence) measurement?
- What level of detail is needed about the α -particles?

K.M. Young 1/17/01

Provisional List of Diagnostics (1)

- Magnetic Measurements
 - Rogowski Coils, Flux/voltage loops, Discrete Br, Bz coils, Saddle coils, Diamagnetic loops, Halo current sensors, Hall effect sensors
- Current Density Profiles
 - Motional Stark effect with DNB, Infrared polarimetry
- Electron Density and Temperature
 - Thomson Scattering, ECE Heterodyne Radiometer, FIR interferometer, Multichannel Interferometer, ECE Michelson interferometer, ECE Grating Polychromator, Millimeter-wave Reflectometer
- Ion Temperature
 - Charge Exchange Spectroscopy with DNB, X-Ray Crystal Spectrometer, Charge Exchange Neutral Analyzer (edge)
- Visible and Total Radiation
 - Visible Survey Spectrometer, Visible Filterscopes, Visible Bremsstrahlung Array, Bolometer Arrays, Plasma TV and Infrared TV
- Ultra Violet and X-Ray Radiation
 - UV Survey Spectrometer, Hard X-ray detectors, Soft x-ray Spectrometer, X-ray pulse height analysis

K.M. Young 1/17/01

Provisional List of Diagnostics (2)

- MHD and Fluctuations
 - Mirnov Coils, Locked-mode coils, Soft x-ray array, Beam emission spectroscopy, Millimeter wave reflectometer, Collective scattering
- Particle Measurements and Diagnostic Neutral Beam
 - Epithermal Neutron detectors, Multichannel Neutron Collimator, Neutron Fluctuation detectors, Diagnostic Neutral Beam
- Charged Fusion Products
 - Escaping Alpha Particle detectors, IR TV (shared with total radiation), Collective Scattering (CO2?), α-CXRS, Knock-on neutron detectors
- Divertor Diagnostics
 - Divertor IR TV, Visible Hα TV, UV Spectrometer, Divertor Bolometer Arrays, Multichord visible spectrometer, Divertor Hα monitors, ASDEX-type Neutral Pressure Gauges, Divertor Thomson Scattering, Penning Spectroscopy, Divertor reflectometer
- Plasma Edge and Vacuum Diagnostics
 - Thermocouples, Fixed Edge Probes, Fast Movable Edge Probes, Torus Ion Gauges, Residual Gas Analyzers, Glow Discharge Probes, Vacuum Vessel Illumination

Conclusions

- A compact advanced copper-coil tokamak, like FIRE, can make major contributions to fusion science studies leading ultimately to fusion energy,
- but significant challenges for <u>diagnostics</u>
 - radiation and other environmental impacts on components,
 - demand for fine spatial resolution profile data for control,
 - alpha-physics diagnostics: alpha-particles and their impact,
 - limited funding.

