FIRE Plasma Facing Component Design Studies

NSO Engineering Peer Review Meeting Princeton, NJ

Jun 4-6, 2000

Presented by Dan Driemeyer The Boeing Company Contributions from Chandu Baxi General Atomics

FIRE Divertor Components

U.S. Industrial Team

- Build on design/fabrication approaches developed during ITER-EDA
- W-brush armor for divertor and plasma-sprayed Be for first wall tiles
- Cu-alloy finger elements for high heat flux outer target
- Swirl tape or helical wire inserts for CHF enhancement
- Dome-like construction for lower heat flux baffle
- Passively-cooled W-Cu tiles for low heat flux inner target
- Modular units for remote maintenance during operation

5/18/2001

Outer Divertor Design Concept

U.S. Industrial Team

- SS316LN back plate for structural support and coolant manifolding
- 24 CuCrZr finger plates with Wbrush armor, attached to back plate using pressed pins
- Actively cooled using concentric pipe feed through divertor ports
- HIP-bond armor using separate canister welds around each finger plate
- HHF cycle finger plates to verify armor joint prior to integration

CuCrZr Finger Plate with Two 8-mm dia Cooling Channels, CHF enhancement feature, and W-Brush Armor

Finger Element Attachment Concept

Component Cooling Assessment

Parameter	Outer Divertor	Baffle
Total Power (MW)	34.3	10.7
Peak Power/module (MW)	2.32	0.58
Peak Heat Flux (MW/m ²)	20.0	6.0
Nuclear heating in W (W/cm^3)	42	34
Nuclear heating in Cu (W/cm^3)	16	13
Channel Diameter (mm)	8	10
Pitch (mm)	14	21
Number per module	48	30
Number in series	2	2
Enhancement	ST, t=1.5 mm	None
	Y= 2	
Maximum PFC Temp (C)	1585	738
Maximum Copper Temp (C)	488	404
Flow velocity (m/s)	10	3
Flow/module (liter/s)	9	3.5
Exit coolant Temperature (C)	95	73.3
Exit Pressure (MPa)	1.06	1.48
Exit Subcooling (C)	87	120
Critical Heat Flux (MW/m ²)	44.	12.1
Maximum Wall Heat Flux (MW/m ²)	30.6	6.31

Unit Cell Geometry for Divertor and Baffle

U.S. Industrial Team

Divertor Unit Cell

* GENERAL ATOMICS

Outer Divertor Temperature Distribution

U.S. Industrial Team

DED-7

* GENERAL ATOMICS

Baffle Plate Design Concept

- Cooled CuCrZr forging with Wbrush armor for erosion control
- Need to develop coolant supply/ return concepts for heat removal
- Integration with outer divertor module looks feasible, flow rates are low (3.5 l/s)
- Attached to vessel using upper pins/rotating sockets and lower shear plates/pins
- HIP-bond armor over entire baffle surface using single perimeter e-beam weld

Baffle Temperature Distribution

U.S. Industrial Team

6 MW/m², Steady-State, Smooth Channels, 3 m/s, 1.5 Mpa, 30°C Inlet

73°C Exit Temp, 1.48 MPa Exit Pressure, 120°C Subcooling

DED-9

* GENERAL ATOMICS

ITER Dome Part Demonstrated Baffle Fabrication Process

Tensile Tests on Witness Part Bonds Confirmed Bond Quality U.S. Industrial Team

First Wall/Inner Divertor Tile Mounting Concept

- 30-mm thick CuCrZr plates with 5-mm thick tungsten or plasma-sprayed beryllium armor
- Wedge-shaped SS316LN rails bolted to vessel, provide mechanical support
- Rails include captive fastener hardware for loading thermal interface contacts with cooled vessel when cover plate is installed

Inner Divertor Temperature Assessment

Halo Current/Disruption Load Assessment

- 1.8 MN disruption loads applied as opposing 3150 lb/in² pressures over end quarter panels
- 0.8 MN halo current load applied as uniform 350 lb/in² pressure over entire plate surface
- Evaluate back plate response only, no credit taken for finger element load sharing
- Model pins as sliding contact interfaces fixed by springs to ground
- Include cross manifold channels in back plate and remove finger attach ribs from front surface

Initial Outer Divertor Configuration

U.S. Industrial Team

Front Surface View Showing Finger Elements

Rear Surface View Showing Vessel Attachment / Cooling Interface Features

Changes to Improve Disruption Load Handling Capability

Halo Current Results Summary

U.S. Industrial Team

Loads within 40 ksi allowable for SS316 in most areas
Contact loads in lugs exceed bearing guideline of 1.5 yield

Disruption Eddy-Current Loads Require Inconel-718 Back Plate

U.S. Industrial Team

Backplate Loads Generally Below 150 ksi Yield for In-718

Some Plastic Deformation Expected Around

Vessel Support Holes (0.1-in Chamfer)

Finger Plate Pull-Off Assessment

U.S. Industrial Team

Is pin attachment scheme adequate if disruption eddy current flows primarily in outer two Cu-finger elements?

- Estimated load of 1.8 MN at each toroidal end of module, confined to 2 outer Cu-fingers
- Must react 0.9 MN pull-off load through attachment pins on single finger
- Requires minimum of 25 In-718 pins for baseline 4.5-mm diameter at backing plate interface
- Requires 40 pin holes in CuCrZr for bearing load maximum of 90 ksi assuming load reacted over ¼ hole circumference

Toroidal Electrical Connectors

U.S. Industrial Team

- Use Multilam® approach developed for ITER by General Atomics
- Assume type LAII/0.15 louver band with a width of 14-mm and a louver spacing of 1.5-mm
- Be-Cu material with good surface contact and spring capability
- Louvers will carry 750 A for a 1-sec duration short circuit condition with a surge capability (10-ms duration) of 3.5 kA
- Reference gap allowance is 0.5-mm for reliable contact force

SECTION A-A

* GENERAL ATOMICS

Possible Connector Configuration

- Estimated toroidal loop current of 400 kA during disruption
- Interweave louver strips to double contacts per unit length
- 56 cm² (8.7 in²) of area required to carry the 400 kA current
- Lugs retaining Multilam strips are 38-mm wide and contain 3 bands on each contact surface
- Rotating legs are ~82-mm long to bridge the gap between modules
- Plates are 10-mm thick to resist bending loads from the current flow

Remaining Issues for FY'01

- Assess/update outer divertor module design based on new disruption conditions (in-place, VDE, and radial disruption).
 Determine whether toroidal electrical connectors are required.
- Refine toroidal electrical connector concepts including alignment and remote handling requirements
- **Develop conceptual design for actively-cooled baffle**
 - 2D & 3D thermal-structural analysis
 - Integration with vessel, primary cooling and remote handling systems
- Update conceptual design for passively-cooled innerdivertor plate based on new disruption conditions
 - 2D & 3D thermal-structural analysis
 - Integration with vessel and remote handling systems

Required R&D Tasks to Confirm Design

- Continue W-brush fabrication process development / scale-up and HHF testing to validate performance and improve reliability / manufacturability
- Continue outer divertor fabrication process development / scale-up begun under ITER through prototype development and testing
 - Channels combining heat transfer enhancement (helical wire, swirl tape, etc.) with W-brush armor
 - Cu-finger element integration with SS back structure (pins, welds, alignment, etc.)
- □ Continue baffle fabrication process development / scale-up
 - Large-area HIP-diffusion bonding
 - End manifold closeout welds
 - Large-area W-armor integration
- Development of effective passive heat transfer layer for first wall and inner divertor tiles (copper foam metals, etc.)
- □ Fabricate and test electrical connectors to validate performance and in-service design guidelines
- □ Fabricate dummy elements/end effectors to use for validating remote handling interfaces and procedures
- Continue Be plasma spray process development begun under ITER for the first wall armor application

Divertor Piping Concept

Tensile Tests Confirmed Bond Quality

U.S. Industrial Team

HIP joint properties slightly lower than base metal due to gas quench