FIRE Vacuum Vessel Cost estimate and R&D needs

B. Nelson, G. Johnson, D. Driemeyer, B. Simmons,

FIRE Design Review June 6, 2001 PPPL

Oak Ridge National Laboratory U. S. Department of Energy

Presentation outline

For each major element of vacuum vessel

- Brief description of what is being costed
- Main assumptions
- Current cost estimate
- R&D summary
- Status : Issues, missing info, impending changes

WBS 1.2 Vacuum vessel cost

WBS	Element	\$k	contingency	element total (\$k)
1.2.1	primary vv shell	14347	34%	19226
1.2.2	vv port extensions	9282	28%	11880
1.2.3	vv plugs	5366	28%	6868
1.2.4	vv htg/cooling	224	36%	305
1.2.5	vv supports	1324	42%	1880
1.2.6	VV local I&C	363	36%	493
	TOTAL	30905	32%	40652

Estimate updated October 2000

Assumed rates: Engr = \$100/hr, Outside Fab = \$100/hr, R&D = \$100/hr

Cost estimate methodology

- Main vessel, port extensions and plugs scaled from ITER EDA cost estimate
- Copper cladding estimated with assistance from Boeing based on ITER experience with divertor structures
- Internal control coils based on coil configuration, number of joints, etc.
- Other estimates based on engr judgement, and scaled by number of flow circuits, sensors, etc.

VV primary shell and port cost est.

	WBS	1.2.1	WBS	1.2.2
	primary vv shell		vv port extensions	
cost category	hours	\$k	hours	\$k
In-house design	24680	2468	7380	738
R&D labor	4720	472	960	96
Procurement support	2960	296	1640	164
Assembly / Installation	13440	1344	15232	1523.2
Integrated systems testing	1280	128	2560	256
M&S				
equipment/materials		12408		6340
purchased services				
travel		50		25
subcontract/ matls OH	8.3%	1034	8.3%	528
SUBTOTAL		18200		9670
Contingency	34%	6188	28%	2708
TOTAL	47080	24388	27772	12378

Includes:

- Torus shell
- Internal shielding
- Active coils
- Passive plates
- Octant to octant welds
- Port to octant welds
- Port extensions and docking flanges
- Mockups for:
 - Octant
 - Midplane port
 - Aux port
 - Vertical port
 - Active coil segment
 - IB passive plate

Does not include:

• Internal hdwe supports

6 June 2001

VV port plug and support costs

	WBS	1.2.3	WBS '	1.2.5
	vv plugs		vv supports	
cost category	hours	\$k	hours	\$k
In-house design	6460	646	3720	372
R&D labor	920	92	680	68
Procurement support	1640	164	380	38
Assembly / Installation	2304	230.4	1440	144
Integrated systems testing	512	51.2	256	25.6
M&S				
equipment/materials		3832		722
purchased services				
travel		25		10
subcontract/ matls OH	8.3%	320	8.3%	61
SUBTOTAL		5361		1440
Contingency	28%	1501	42%	605
TOTAL	11836	6862	6476	2045

Includes:

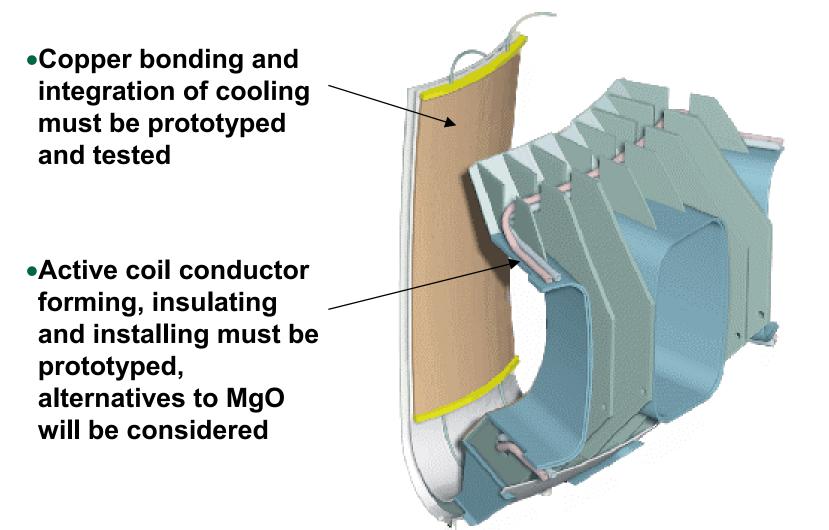
- Port plugs for all ports -Midplane
 - -Auxiliary
 - -Vertical
- Mockup plugs
- Support links, hardware
- Support link fitup

Does not include:

- Modification of plugs for diag., heating systems
- VV support brackets on TF coil side

VV heating / cooling and I&C cost

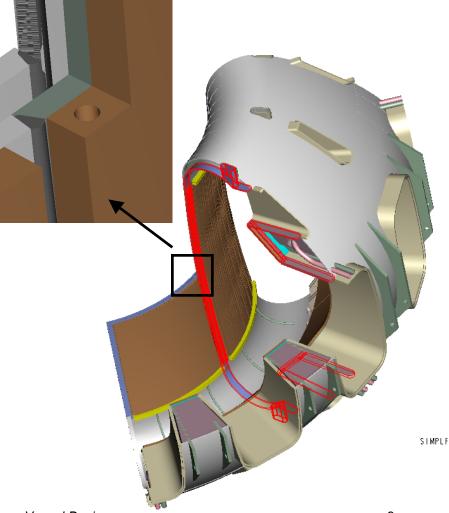
	WBS [·]	1.2.4	WBS	1.2.6
	vv htg/cooling		VV local I&C	
cost category	hours	\$k	hours	\$k
			1000	(0.0
In-house design	1000	100	1320	132
R&D labor	0	0	0	0
Procurement support	40	4	320	32
Assembly / Installation	640	64	1056	105.6
Integrated systems testing	160	16	400	40
M&S				
equipment/materials		415		112
purchased services				
travel		5		5
subcontract/ matls OH	8.3%	35	8.3%	10
SUBTOTAL		639		436
Contingency	36%	230	36%	157
TOTAL	1840	869	3096	593


Includes:

- Internal vessel cooling lines and manifolding inside cryostat 72 circuits)
- Local heaters on vessel
- Local I&C sensors
 - 192 temp sensors on vessel
 - 72 flow meters
 - 72 pressure transducers
 - 144 water temp sensors

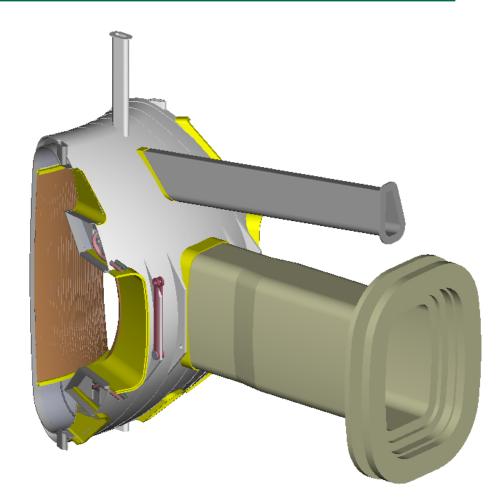
Does not include:

Signal conditioningWiring


Cu cladding, IC coils need R&D

FIRE Review: Vacuum Vessel Design

Field weld RH must be demonstrated


- •Field welds must be made in double wall vessel, including copper stabilizing plates
- •ITER developed welding and cutting tools that must be modified and demonstrated for FIRE
- Same tools can be used for initial assembly to ensure high quality welds

6 June 2001

Prototype of vessel octant needed for RH mockup

- •Vessel octant with port extensions contains all features needed for demonstrating fabrication
- •Same prototype would be used for remote handling mockup to be used for demonstration of :
 - Transfer cask docking
 - Divertor handling
 - FW tile handling / alignment
 - Recovery operations
 - Etc.

R&D Cost and schedule

•Cost: Prototypes and mockups are assumed to cost ~2 times cost of production units

•Testing and development estimated by task:

 Passive stabilizer bonding/ cooling integration/ testing 	\$743k
 Internal control coil fabrication / testing 	\$385k
 Octant fabrication 	\$894k
 Octant field joint remote welding/cutting demo 	\$287k
 Port extensions and demonstrations 	\$779k
 Docking flange prototype and demo 	\$204k
 Gravity support links prototypes and testing 	<u>\$215k</u>

Total estimated R&D for vacuum vessel \$3445k

•Schedule: Cu cladding, IC coil and welding/cutting begin during preliminary design, prototypes as part of fabrication subcontracts

6 June 2001

VV Cost / R&D summary

- Total vessel cost = \$41M with 32% contingency
- Vessel cost developed by scaling ITER EDA estimate and adjusting for design changes
- R&D is required for specific details of
 - Passive plate bonding and fabrication
 - Active coil fabrication and integration
 - Vessel field joint welding
- Complete prototype octant with port extensions and docking flanges will be provided as first article and will serve as mockup for remote handling facility