FUSION IGNITION RESEARCH EXPERIMENT (FIRE) Machine Configuration

Tom Brown (PPPL) June 5 – 7 , 2001

FIRE Configuration Presentation Outline

- Review the basic configuration concept.
- Define key component design features and assembly approach.
- Summary.

FIRE Configuration Features

- Double null divertors
- Double wall VV integrating cooling and shielding
- Wedged, inertially cooled (LN₂) TF coils
- Compression rings help support in plane loads
- RM of divertors through midplane port

VACUUM VESSEL

Weight of structure, shield and ports is ~130 tonnes

- Double wall construction integrates cooling and shielding
- supports active and passive stability systems
- Divided into 45° Octants
- 16 horizontal ports
- 16 upper/lower angled ports
- 16 small circular ports, top/bottom

Vacuum Vessel Port Details

Vessel shielding, port plugs and TF provides hands-on access to port flanges

Vacuum Vessel Support Concept

TF System

- 16 coils with partial cases
- Inertially LN₂ cooled
- High strength BeCu C17510 inner legs, OFHC copper used in remainder of coil
- Wedged support
- Compression rings help in supporting in plane loads

TF Assembly Scheme

Compression rings suppress "de-wedging" in the corners of the TF coils

.51m W x .83m H ring 10 ksi jack pressure (64 Mpa) 500 Mpa ring hoop stress

PF System Arrangement

FIRE device thermal enclosure and interface detail

Polyurethane foam insulation with fiberglass inner and outer skins

- Divertors installed through midplane ports
- Cantilevered articulated boom provides in-vessel coverage through 4 ports
- End-effector sized for 800 kg divertor/baffle module
- A smaller power arm endeffector would be used for FW maintenance

Divertor / RM Interface

FIRE In-Vessel Remote Handling System

In-vessel transporter

- Articulated boom deployed from sealed cask
- Complete in-vessel coverage from 4 midplane ports
- Fitted with different end-effector depending on component to be handled
- First wall module end-effector shown

Divertor end-effector

- High capacity (module wt. ~ 800 kg)
- Four positioning degrees of freedom
- Positioning accuracy of millimeters required

COMPONENT BUILD DIMENSIONS

FIRE – Elevation Section View

Machine Assembly of TF / VV Octant in the Test Cell Building

Configuration Summary

A baseline configuration has been developed for FIRE in sufficient detail to address major design issues.

- No technical "show stoppers" have been uncovered,
- Component support requirements can be met,
- In-vessel access for RM, heating, auxiliary systems appear feasible.

Design issues still need to be addressed in the next design phase.

- The full array of diagnostic equipment needs to be integrated into the design,
- Assessment of RM of in-vessel components should continue,
- Service details needs to be integrated and their maintenance approach reviewed.