OBSERVATION AND CHARACTERIZATION OF COHERENT, RADIALLY-SHEARED ZONAL FLOWS IN THE DIII-D TOKAMAK

George R. McKee

University of Wisconsin-Madison, Madison, Wisconsin, USA

R. J. Fonck, M. Jakubowski	University of Wisconsin-Madison
K. Burrell	General Atomics
D. Rudakov, R. Moyer	University of California-San Diego
K. Hallatschek	Max-Planck Insitut fur Plasmaphysik
W. Nevins, G. Porter, X. XuLawrence Livermore National Laboratory	
P. Schoch	Rensselaer Polytechnic Institute

30TH EPS CONFERENCE ON CONTROLLED FUSION AND PLASMA PHYSICS EUROPEAN PHYSICAL SOCIETY ST. PETERSBURG, RUSSIA 11 JULY 2003

GENERAL

ATOMICS

ZONAL FLOWS THOUGHT CRUCIAL TO MEDIATING FULLY SATURATED TURBULENCE IN PLASMAS

- Predicted to regulate turbulence via fluctuating $E_r x B_T (v)$ flows
 - Observed in simulations of core and edge turbulence
 - Self-generated by turbulence through, e.g., Reynolds stress
- Structure: n=0, m=0, radially-localized electrostatic potential (linearly stable)
 - Low-frequency residual zonal flow (f < 10 kHz)
 - Higher-frequency Geodesic Acoustic Mode (10-200 kHz)

- Motivation to experimentally characterize zonal flows
- Measurement Technique:
 - Density fluctuation imaging with Beam Emission Spectroscopy (BES)
 - Time-dependent turbulence flow field:

Time-Delay-Estimation (TDE) analysis techniques ==> v (R,Z,t)

- Flow feature observed:
 - Coherent poloidal oscillation
 - Poloidally uniform, radially sheared
 - Frequency depends on local temperature
 - Similar to Geodesic Acoustic Modes (class of zonal flows)
- BOUT simulations exhibit GAM
 - similar frequency to observed flow
- Summary

3D BRAGINSKII SIMULATIONS OF EDGE-TO-CORE TRANSITIONAL REGIME EXHIBIT COHERENT ZONAL FLOWS

Poloidal E_rxB_T Flow Contour

R_{LB}, Resistive Ballooning Scale Length (~mm)

K. Hallatchek, D. Biskamp, Phys. Rev. Lett. **86**, 1223 (2001), Fig. 1(a)

- Simulated flow profile evolves to steady, coherent oscillation
- Zonal flow specifically a: Geodesic Acoustic Mode (GAM)
- Regulates turbulence and transport

BEAM EMISSION SPECTROSCOPY (BES) DIAGNOSTIC MEASURES LOCAL, LONG-WAVELENGTH (k | < 1) DENSITY FLUCTUATIONS

2D CAPABILITY OF BES ALLOWS FOR IMAGING AND APPLICATION TO TURBULENCE FLOW MEASUREMENT

Two-DIMENSIONAL IMAGES OF DENSITY FLUCTUATIONS ELUCIDATE COMPLEX, NONLINEAR INTERACTIONS OF TURBULENT EDDIES

TURBULENCE MOVIES DEMONSTRATE EDDY INTERACTION

- Poloidal advection (higher inside)
- Eddy shearing from flow shear
- Net Outward particle flux
- Strong nonlinear interaction of eddies (tearing and congealing)

IATIONAL FUSION FACIL

SAN DIFGO

TYPICAL CHARACTERISTICS OF TOKAMAK PLASMA TURBULENCE

FLUCTUATION TIME SERIES EXHIBITS HIGH COHERENCE, POLOIDAL CONVECTION

• Average Time Delay ~ 3 s: 3.5 km/s poloidal advection of turbulence

TIME-VARYING TURBULENCE FLOWS MEASURED VIA 2D DENSITY FLUCTUATION MEASUREMENTS WITH BES

TIME-RESOLVED CROSS-CORRELATION TO PERFORM TIME-DELAY-ESTIMATION ANALYSIS

WAVELET METHOD TO PERFORM TIME-DELAY-ESTIMATION ANALYSIS

M. Jakubowski, Ph.D., Thesis U. Wisconsin (2003)

DIII-D EXPERIMENT PERFORMED TO EXPLORE TURBULENCE FLOWS AND N AND T SCALING

COHERENT VELOCITY OSCILLATION OBSERVED IN TDE ANALYSIS MEASUREMENTS

- time-delay measurements
- Oscillation in phase
- Amplitude significant fraction of equilibrium
- Similar flow observed in decorrelated turbulence

 $v_{\theta}(t) = \frac{\Delta Z}{\tau(t)} \approx \frac{\Delta Z}{t_{0}} \left(1 - \frac{\partial \tau(t)}{t_{0}}\right)$

Channel-to-channel

(Channels offset vertically for clarity)

POLOIDAL VELOCITY SPECTRA EXHIBIT COHERENT OSCILLATION WITH LONG POLOIDAL CORRELATION LENGTH

v Spectra vs. Poloidal Separation $4x10^{-2}$ Highly coherent frequency -> long-lived structure Z = 1 cmflow >>turbulence Cross Power Spectra (a.u.) 01xb 01xb High spatial correlation Z = 3 cmover > 5 cm $L_{c, |flow} >> L_{c, |\tilde{n}|}$ $f \approx c_s/2 R (12 kHz)$ Z = 5 cmConsistent with expected features of a: **Geodesic Acoustic Mode** 20 30 40 Frequency (kHz)

- Electrostatic acoustic oscillation in toroidal plasmas
- Radially localized zonal flow (m=0, n=0)
- Nonuniform poloidal ExB/B^2 flow causes pressure asymmetries on a flux surface
- Coupled to an m=1/n=0 pressure perturbation: $\tilde{p}=p_0 \sin()$
 - ==> restoring force on the flux surface, arising from radial component of the diamagnetic current, leads to the coherent oscillation
- Frequency: $\approx c_s / R$ (correction terms of order unity)
- Driven by turbulence via Reynold's stress

References

Winsor, Johnson, Dawson, Phys. Fluids 11, 2448 (1968). Hallatschek, Biskamp, Phys. Rev. Lett. 86, 1223 (2001). Ramish, Stroth, Niedner, Scott, New J. Physics 5, 12.1 (2003).

FREQUENCY OF COHERENT V FEATURE

SCALES WITH LOCAL TEMPERATURE

FREQUENCY OF COHERENT V FEATURE

SCALES WITH LOCAL TEMPERATURE

- Mode frequency increases with temperature:
 - suggests oscillation is a Geodesic Acoustic Mode:
 f_{GAM} = c_s/2 R=12 kHz

 $c_s = \sqrt{(T_e + T_I)/M_I}$ (T_I ~ 240 eV, R = 1.73 m)

- Average frequency of mode scales with local T_e+T_l
 - Correction factors of order unity

SPATIAL AND PHASE RELATIONSHIP OF COHERENT V FEATURE

INDICATES POLOIDALLY-UNIFORM, RADIALLY-SHEARED FLOW

TIME-RESOLVED TURBULENCE FLOW FIELD EXHIBITS ZONAL FLOW CHARACTERISTICS

- Movie derived from ensemble-averaged, time-lag cross-correlations
- Exhibits expected spatial and temporal phase relationship of zonal flow oscillation
- Radial shear apparent over observed region
 - Poloidally, nearly uniform flow
- Peak velocity amplitude ~0.5 km/s

EFFECTIVE SHEARING RATE OF V OSCILLATION CAN AFFECT TURBULENCE

• Approximate RMS magnitude of oscillation: $\tilde{v} \approx 500 \text{m}/\text{s}$

• Estimate shearing rate:
$$s \approx \frac{d\tilde{v}}{dr} \approx \frac{2(500m/s)}{0.03m} = 0.3 \times 10^5 s^{-1}$$

- Measured turbulence decorrelation rate: $T \sim 1/C \sim 1 \times 10^5 S^{-1}$
- Comparison: S < T, but values are comparable

Oscillation can affect turbulence and reduce amplitude

MEASURABLE BICOHERENCE SUGGESTS REYNOLDS STRESS DRIVE

• Reynolds stress gradient can drive zonal flow:

- Represented as 3-way interaction
- Finite phase coupling of density fluctuations to v oscillation
- Suggests Reynolds stress contribution

Diamond, Phys. Rev. Lett. (2000). Tynan, Phys. Plasmas (2001). Moyer, Phys. Rev. Lett. (2001). Shats, Phys. Rev. Lett. (2002). Holland, Proc. 19th IAEA (2002).

POTENTIAL FLUCTUATION MEASUREMENTS FROM LANGMUIR PROBE EXHIBIT ~13 KHz FEATURE

- Semi-coherent *potential* fluctuation near separatrix (r/a~0.98) with Langmuir Probe
- I_{SAT} spectrum (ñ) does not exhibit similar 13 kHz feature
 - 13 kHz feature likely a low m structure
- Consistent with expectation that flow oscillation seen with BES is electrostatic (E_rxB_T)

D. Rudakov, R. Moyer, UCSD

SMALL BUT FINITE DENSITY FLUCTUATION ASSOCIATED WITH GAM OSCILLATION: NOT PREDICTED THEORETICALLY

- GAMs couple to m=1/n=0 \tilde{p}
- Density fluctuation observed at v oscillation frequency
- Not observable near separatrix
- ñ phase shift: m ~ 10
- Propagates in **electron** diamagnetic direction

GAM NOT OBSERVED IN ALL DISCHARGES: NOT APPARENT IN LOW **q**95 Discharges

- Higher-q plasma exhibits strong GAM oscillation, lower-q exhibits no hint of GAM oscillation
- Qualitatively consistent with theoretical damping rate:

 $damp = GAM exp(-q^2)$

[Hinton, Rosenbluth, PPCF, 1999]

• Requires further systematic experimental study for validation

Coherency of poloidally-separated v (t) measurements

Suggests that GAM amplitude reduced at lower q₉₅

BOUT SIMULATION EXHIBITS GEODESIC ACOUSTIC MODE AT SIMILAR FREQUENCY TO MEASURED V OSCILLATION

- BOUT models boundary-plasma turbulence with modified Braginskii equations in realistic geometry
- Simulation performed with experimental edge profiles from these discharges
- Coherent GAM observed in simulation as m=0, localized potential fluctuation

BOUT SIMULATION EXHIBITS GEODESIC ACOUSTIC MODE AT SIMILAR FREQUENCY TO MEASURED V OSCILLATION

- BOUT models boundary-plasma turbulence with modified Braginskii equations in realistic geometry
- Simulation performed with experimental edge profiles from these discharges
- Coherent GAM observed in simulation as m=0, localized potential fluctuation

DALF3 TURBULENCE SIMULATION ILLUSTRATES DENSITY TURBULENCE OSCILLATION WITH GAM

- Drift Alfvén code, DALF3: nonlinear, 3D flux-tube fluid simulation of boundary turbulence
- GAMs observed, interact strongly with turbulence

oloidal Direction

 Density turbulence observed to oscillate with GAM

Electrostatic potential: (r,Z,t)

Density: n(r,Z,t)

Radial Direction

Courtesy: M. Ramisch, U. Stroth, University of Kiel B. Scott, Max Planck Institut für Plasmaphysik

POTENTIAL OSCILLATION OBSERVED IN TEXT TOKAMAK WITH HIBP: ALSO EXHIBITS "GAM" TEMPERATURE SCALING PROPERTIES

- Heavy Ion Beam Probes measures and ñ fluctuations
- Radially-localized electrostatic mode
 - Little associated density fluctuation
- m=0 mode
 - Poloidally-separated multi-point measurements
- Frequency scales as Geodesic Acoustic Mode

P.M. Schoch, K.A. Connor, D.R. Demers, X. Zhang, Rev. Sci. Instrum. **74**, 1846 (2003).

SUMMARY AND CONCLUSIONS

- Time-varying turbulence flows measured by applying TDE to 2D BES data:
 - exhibits characteristics of zonal flows (GAMs), crucial to regulating turbulence
- Characteristics of these observed flows (seen 0.85 < r/a < 1.0):
 - Coherent oscillation (~15 kHz); frequency scales with T_e+T_I
 - No measurable poloidal phase shift: |m| < 2
 - 180° radial shift over 3 cm
 - $s \sim 1/c$: may modulate turbulence amplitude
 - *Possible safety factor dependence: GAMs weaken at lower q?*
 - Similar zonal flow (GAM) characteristics observed HIBP data from TEXT
- BOUT simulations:
 - *Predicts geodesic acoustic mode at similar frequency to measurement*

Zonal flows (GAMs) observed in DIII-D, exhibit features consistent with simulations, and are a component of fully saturated turbulence state

TRANSFER FUNCTIONS FOR TIME-DELAY-ESTIMATION DERIVED VIA SIMULATION

- Relates measured (output) time delay to actual (input) time delay
- Strongly dependent on:
 - velocity magnitude
 - density spectrum
 - signal-to-noise ratio
- Iterative analysis procedure required quantify results
- Time-domain more sensitive at low frequencies, wavelet method exhibits higher frequency response

HIBP DATA FROM TEXT: FINITE BICOHERENCE OBSERVED BETWEEN DENSITY AND POTENTIAL NEAR GAM FREQUENCY

 Finite bicoherence between at "GAM" frequency and broad band n fluctuations

 Suggests nonlinear coupling of ñ fluctuations to GAM oscillation

ZONAL FLOW BEHAVIOR INFERRED FROM EXPERIMENTAL OBSERVATIONS

- Measurements of radially propagating density fluctuations with k ~0 obtained with Phase Contrast Imaging at DIII-D
 - S. Coda S, M. Porkolab, K. H. Burrell, Phys. Rev. Lett. **86**, 4835 (2001).
- Increased Reynolds Stress gradient prior to poloidal accelerations and improved confinement regime from edge probe measurements
 - Y. Xu et al., Phys. Rev. Lett. 84, 3867 (2000)
- Increased Bicoherence prior to LH Transition suggestive of Reynolds Stress, a zonal flow driving mechanism, from edge probe measurements:
 - P. Diamond *et al.*, Phys. Rev. Lett. **84**, 4842 (2000)
 - R. Moyer *et al.*, Phys. Rev. Lett. **87**, 135001-1 (2001)
 - G. Tynan *et al.*, Phys. Plasmas **8**, 2691 (2001)
 - C. Holland, IAEA 2002
- Poloidally symmetric (m=0) flows/potential fluctuation nonlinearly coupled to fluctuations in H-1 Heliac from probe measurements
 - M. Shats *et al.*, Phys. Rev. Lett. **88**, 045001-1 (2002)

V OSCILLATION MODULATES TURBULENCE AMPLITUDE

- Density fluctuations frequency filtered: 100 < f < 200 kHz (f >> v)
- Amplitude envelope evaluated; power spectrum determined
- Lower frequency fluctuations show modest but less effect from v oscillation

 Suggests energy exchange between waves/fluctuations and GAM flow

> (Diamond et al., Nuclear Fusion 2002)

