TSC Modelling of Current Ramp Scenarios with ITB-Generated Bootstrap Currents in JT-60U Reversed Shear Discharges

- <u>Y. Nakamura</u>¹⁾, H. Tsutsui²⁾, N. Takei²⁾, Y. Sakamoto¹⁾, T. Fujita¹⁾, M. Sugihara¹⁾, T. Ozeki¹⁾, K. Tobita¹⁾, S. Konishi¹⁾, S. Tsuji-Iio²⁾, R. Shimada²⁾ and S.C. Jardin³⁾
 - Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka, Ibaraki, 311-0193, Japan
 - ²⁾ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550, Japan
 - ³⁾ Princeton Plasma Physics Laboratory, Princeton, P.O. Box 451, New Jersey 08543, USA

Outline

JT-60U

- A Modelling of Internal & Edge Transport Barriers (ITB & ETB) relevant to bootstrap currents has been implemented on TSC.
- The TSC nicely reproduced a specified ramp-up of JT-60U RS discharge assisted with the ITB & ETB-generated bootstrap currents.
 - A self-adjustment of the ITB-foot radius (foot) to the magnetic shear reversal (q_{min}) results in a remarkable recover of the ramp-up detail (E36486).
 - A mis-alignement of foot with (q_{min}) leads to outward or inward drift of ITBs, which show quite different profile property.
- A fast and strong ITB build-up near plasma core may cause an over-drive bootstrap current which accompanies a negative electric field just inside of the ITB region.

-> The TSC has demonstrated a detailed process of Current Hole formation.

ITB & ETB Modelling on TSC

JT-60U

TSC is a free boundary, axisymmetric, single fluid, time-evolution code with PF coil power supplies,

realistic ramp-up simulation available.

- Numerical Model
 - Momentum eq. of single fluid *m* :

$$\frac{\boldsymbol{m}}{t} + \boldsymbol{F}_{v}(\boldsymbol{m}) = \boldsymbol{j} \times \boldsymbol{B} - p$$

Faraday's law for g & time-evolution

$$\frac{B}{t} = - \times E \quad ; \quad B = \times +g$$

- Ohm's law : $j_{oh} = j_{total} j_{bs}$ $E + v \times B = j_{oh}$
- ITB & ETB-generated BS Current $\langle \boldsymbol{j}_{bs} \cdot \boldsymbol{B} \rangle = L_{31} \Big[A_1^e + Z_i^{-1} T_i / T_e \Big(A_1^i + i A_1^e \Big) \Big] + L_{32} A_2^e$

S. P. Hirshman, Phys. Fluids 31 (1988) 3150.

- ITB & ETB Model
 - Prescribed pressure profiles given by functions of hyperbolic tangent of radius ().
 - Radii of ITB-foot & q_{min} monitored were adjusted during TSC simulations.

Standard Ramp-up with ITB-Generated BS Current in JT-60U

A well shaped RS discharge of 1.5 MA at 5.8 sec (E36486)

TSC Reproduction of Ip Ramp-up with ITB Model : $_{foot} = (q_{min})$

Time-Evolution of Equilibria & Current Profile (TSC)

JT-60U

E36486 was recovered by the ITB model of $\rho_{foot} = \rho(q_{min})$.

Time-Evolution of q-Profile (TSC)

- The ITB location (foot) drifts to ~ 0.6 as well as the experiment of (q_{min}).
- q_{min} of TSC agrees with the experiment (~ 3.0).
- q₀ of TSC (~ 11.0) seems larger than the experiment (~ 8.0).

The ITB modeling of $\rho_{foot} = \rho(q_{min})$ can provide similar evolution of $q(\rho)$ to the experiment of E36486.

Time-Evolution of Current Profile (TSC)

- j_{total}() is localized at ~ 0.6 as experiment, because of the localization of under-drive BS current.
- BS current fraction (f_{bs}) was 40 % at most.
- After a substantial BS current drived, a steep profile of j_{total}() just inside of ITB region is appearing.

TSC building-up of plasma current was in good agreement with experiment (E36486).

• Exp.

2

lp, I_{bs} (MA)

0

3

٥

I_{bs}

Time-Evolution of E-Profile (TSC)

- At initial phase of t = 0.0 0.6 sec, electric field is decreasing as the plasma temperature arises.
- As BS current increases in accordance with ITB (t = 0.6 - 1.4 sec), total current becomes to locally distribute around the ITB.
 - lowering of electric field around the ITB
- The low electric field is propagating to plasma core region, and makes a lowering of electric field there, but BS current is still an under-drive.

15

10

5

0

0

Lowering of

0.2

JT-60U

E-profile with a strong deformation evolves in accordance with the locality of BS current distribution.

When ρ_{foot} disagrees with $\rho(q_{\text{min}})$, how the ITB is moving?

JT-60U

Motivation induced by the interest of operational reactor scenarios & power estimation of non-inductive, external control of current profile, e.g. NNBI, LHCD, ECCD, FW etc.

Small mis-alignement of foot with (q_{min}) leads to outward or inward drift of ITBs.

 During the ITB drift, both q₀ and q_{min} is almost unchanged.

Although outward-going and inward-going property looks like symmetric, timeevolutions of current, electric field and q-profiles are quite different as Next.

ITB-Expansion for an Outside Offset : $_{foot} > (q_{min})$

- Time-evolution of q-profile and j_{bs} is almost uniform, parallel, outward-going.
- j_{total} looks outward-going as well, leaving its tracing field behind.
- The electric field profile (V) has a weak deformation.
- Finally, expanding ITB becomes to marge with ETB.

ITB-expansion arising from mis-alignement of foot >
(q_{min}) is nearly uniform, parallel, outward-going.

ITB-Shrinkage for an Inside Offset : $_{foot} < (q_{min})$

. Ĵbs

 $B_{\rm p} \, {\rm d}r$

- A remarkable localization of q-profile and electric field appears in the inside front of shrinking ITB.
- BS current j_{bs} is not parallel moving, but substantially increases.
- In the inside front of shrinking ITB, increasing BS current j_{bs} becomes over-drive than j_{total}.
 - Over-drive BS current leads to negative E-field there.
 - ITB build-up near plasma core region is more easy to dig out the ohmic current from the ITB region.

JT-60U

- 12 -

TSC Simulation of Current Hole Formation

- By inputting an inside offset of fast & strong ITB in TSC, ITB moved to foot ~ 0.5 at t = 0.6 sec.
- Ip and I_{bs} continue to ramp-up in simulation as well as E36486
- A remarkable increase of q₀ appeared, then q₀ went more than 80 at t =1.0 sec.

Current Hole Formation due to Over-Drive BS Currents

Discovery of Current Hole in JT-60U

In plasma core region, an area w/o any of Bp was discovered in JT-60U & JET (Current Hole).

- ITB build-up
 - Off-axis BS current increase

→ j(0) decrease & q(0) rise

• Formation of Current Hole as single fluid TSC

Stable Current Hole remained alive for several sec.

00 s

Summary

JT-60U

- A simple ITB & ETB model was installed in time-evolution MHD code (TSC).
- Current ramp-up with associated BS current was studied for a tokamak operational purpose.
- A specific ramp-up of JT-60U RS discharge was reproduced by the TSC, when the ITB-foot adjusts to the magnetic shear reversal.
- A fast and strong ITB build-up near plasma core was pointed out to cause an over-drive bootstrap current inside the ITB region.

The TSC has demonstrated an example process of Current Hole formation.

Following issues are listed for Future Study

- Ramp-up optimization without Center Solenoid for reactor
- ITB model improvement using transport model instead of prescribed pressure
- Possibility of slow ramp-up to reduce AC loss of SC coils in reactor
- External control to expand the ITB region & power estimation of the control