

Improved H-mode Identity Experiments at JET and ASDEX Upgrade

George Sips

Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748, Garching, Germany.

Acknowledgements to

E. Joffrin², M. de Baar³, R. Barnsley⁴, R. Budny⁴, R.J. Buttery⁵, C.D. Challis⁵, C. Giroud², O.Gruber¹, T.C. Hender⁴, J. Hobirk¹, L.D. Horton¹, X. Litaudon², C.F. Maggi¹, Y-S Na¹, S.D. Pinches¹, A. Stäbler¹, the ASDEX Upgrade Team and the EFDA-JET contributors.

> ¹Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748, Garching, Germany. ²Association EURATOM-CEA, CEA Cadarache, F13108, St. Paul lez Durance, France. ³Associatie EURATOM-FOM, FOM Rijnhuizen, P.O. Box 1207, 3430 BE, The Netherlands. ⁴Plasma Physics Laboratory, Princeton University, Princeton, USA. ⁵EURATOM-UKAEA Association, Culham Science Centre, OX14 3EA, Abingdon, UK.

q-profile

5

Motivation H-mode inductive scenario

Requirements for ITER

JET

q ₉₅	H ₉₈ (y,2)/β _N	<n<sub>e>/n_{GW}</n<sub>	Q
3	1.0/1.8	0.85	10 (400 s.)

Safe operation at maximum I_{P} . **q**₉₅ =3: $\beta_{N} = 1.8$: Conservative to avoid NTM's.

 $< n_e > / n_{GW} = 0.85$: ITER, $n_e(r)$ assumed flat, n_{e0} to get Q=10, $n_{e,edge}$ for divertor lifetime.

Motivation

Requirements for ITER

JET

q ₉₅	H ₉₈ (y,2)/β _N	<n<sub>e>/n_{GW}</n<sub>	Q
3	1.0/1.8	0.85	10 (400 s.)
5-6 ¹	2.0/3.5 ²	> 1.2 ³	? (SS, Q=5)

1. q-profile only sustained at low $\beta_N < 2$.

- 2. required H₉₈(y,2) & β_N only transiently.
- 3. So far, no results at relevant edge n_e .

VELOPMENT AGR

Requirements for ITER

JET

q ₉₅	H ₉₈ (y,2)/β _N	<n<sub>e>/n_{GW}</n<sub>	Q
3	1.0/1.8	0.85	10 (400 s.)
5-6 ¹	2.0/3.5 ²	> 1.2 ³	? (SS, Q=5)
~4	1.3/2.5	~1	~10* (4000 s.)*

*T. Luce, P-4.42 (Friday)

- No sawteeth, in most cases no ITB.
- Established at AUG (Wolf, 2000) and DIII-D (Luce, 2001 & Wade, 2001).

Hybrid scenarios at ASDEX Upgrade

Need to demonstrate this regime in more experiments !

Aims for Experiments at JET

- Can the improved H-mode scenario of ASDEX Upgrade be established at JET, using a ρ^{*} close to ASDEX Upgrade (1.4MA/1.7T) ?
- Can stationary conditions obtained with similar q(r), H₉₈(y,2), β_N and MHD activity ?
- At low δ and high δ ?
- Do we see differences at lower ρ^* (2.8MA/3.4T) ?

O EFDA

Need to demonstrate this regime in more experiments !

Aims for Experiments at JET

- Can the improved H-mode scenario of ASDEX Upgrade be established at JET, using a ρ^{*} close to ASDEX Upgrade (1.4MA/1.7T) ?
- Can stationary conditions obtained with similar q(r), H₉₈(y,2), β_N and MHD activity ?
- At low δ and high δ ?
- Do we see differences at lower ρ^* (2.8MA/3.4T) ?

No

Yes

Plasma shapes used in JET compared to ASDEX Upgrade

 Current rise optimised for low inductance, however not reversed q-profiles.

JET

- Timing of the heating and LHCD (1.5 MW) tuned to avoid sawteeth.
- Enough power (beta) is required to keep sawteeth away.

IPP

JET

E U R O P E A N F U S I O N D E V E L O P M E N T A G R E E M E N

JET

With sawteeth, 3/2 and 2/1 NTM are triggered, \rightarrow beta collapse for $\beta_N < 2.5$

JET

JET

- At higher power, the H-factor improves, beta increases ~ linearly.
- Still no hard NTM limit found, need more input power.
- At <n_e>/n_{GW} < 0.6, substantial fast particle content (30 %) !
- β_NH₈₉/q₉₅² reaches values required for ITER.

E U R O P E A N F U S I O N D E V E L O P M E N T A G R E E M E N T

JET

No impurity accumulation: Avoided by central heating.

O EFDA

30th EPS, St Petersburg, Russia, 7-11 July 2003

JET

- Similar to ASDEX Upgrade.
- Temperature profiles are stiff.

- ITB within q=1, for $< n_e > /n_{GW} \le 0.3$ (similar as reported by Joffrin, 2002).
- TRANSP: reduced transport.

Current density profiles

At end of heating phase, q(r) stationary. Also confirmed by ASTRA calculations.

	1.4MA/1.7T	2.8MA/3.4T
I _{CD} /I _p	45%	13%
I _{он}	0.75 MA	2.35 MA
I _{NBI}	0.33 MA	0.12 MA
BS	0.32 MA*	0.25 MA

*: Off axis to sustain low shear near q=1.

Summary and Conclusions

- By matching plasma shape, q-profile and ρ^* , an improved H-mode scenario has been obtained at JET (1.4MA/1.7T).
- In stationary conditions, small NTM and fishbone activity in the core.
- With similar β_N , H-factor, MHD and profiles as at ASDEX Upgrade.
- At lowest ρ*, ITB formation at low density, no Type I ELM's. Not enough heating power to establish improved H-mode ?

More experiments:

O EFDA

Document the beta limit at JET at 1.4MA/1.7T.

More experiments at $\delta \sim 0.44$ (higher density).

Assess the lowest ρ^* with maximum input power.